BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26942690)

  • 1. Design of Asymmetric Peptide Bilayer Membranes.
    Li S; Mehta AK; Sidorov AN; Orlando TM; Jiang Z; Anthony NR; Lynn DG
    J Am Chem Soc; 2016 Mar; 138(10):3579-86. PubMed ID: 26942690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide nanotube composed of cyclic tetra-β-peptide having polydiacetylene.
    Ishihara Y; Kimura S
    Biopolymers; 2012; 98(2):155-60. PubMed ID: 22733527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting terminal charged residue shift for wide bilayer nanotube assembly.
    Zhao Y; Qi H; Zhang L; He C; Wei F; Wang D; Li J; Qi K; Hu X; Wang J; Ke Y; Zhang C; Lu JR; Xu H
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1-10. PubMed ID: 36049324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurofibrillar tangle surrogates: histone H1 binding to patterned phosphotyrosine peptide nanotubes.
    Li S; Sidorov AN; Mehta AK; Bisignano AJ; Das D; Childers WS; Schuler E; Jiang Z; Orlando TM; Berland K; Lynn DG
    Biochemistry; 2014 Jul; 53(26):4225-7. PubMed ID: 24955650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study on tertiary structural elements of beta-peptides: nanotubes formed from parallel-sheet-derived assemblies of beta-peptides.
    Beke T; Csizmadia IG; Perczel A
    J Am Chem Soc; 2006 Apr; 128(15):5158-67. PubMed ID: 16608352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive double-switched self-assembled cyclic peptide nanotubes: a dual internal and external control.
    Calvelo M; Granja JR; Garcia-Fandino R
    Phys Chem Chem Phys; 2019 Oct; 21(37):20750-20756. PubMed ID: 31513191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusion and fission of molecular assemblies of amphiphilic polypeptides generating small vesicles from nanotubes.
    Watabe N; Joo Kim C; Kimura S
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes.
    Brea RJ; Reiriz C; Granja JR
    Chem Soc Rev; 2010 May; 39(5):1448-56. PubMed ID: 20419200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model.
    Wimley WC; Hristova K; Ladokhin AS; Silvestro L; Axelsen PH; White SH
    J Mol Biol; 1998 Apr; 277(5):1091-110. PubMed ID: 9571025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of a peptide nanotube with a water-membrane interface.
    Chipot C; Tarek M
    Phys Biol; 2006 Feb; 3(1):S20-5. PubMed ID: 16582462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion current calculations based on three dimensional Poisson-Nernst-Planck theory for a cyclic peptide nanotube.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem B; 2006 Apr; 110(13):6999-7008. PubMed ID: 16571014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-assembly of cyclic peptide nanotubes and block copolymers in thin films: controlling the kinetic pathway.
    Zhang C; Xu T
    Nanoscale; 2015 Oct; 7(37):15117-21. PubMed ID: 26355605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Membrane-Active Peptides Get into Lipid Membranes.
    Sani MA; Separovic F
    Acc Chem Res; 2016 Jun; 49(6):1130-8. PubMed ID: 27187572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The EGF receptor transmembrane domain: 2H NMR study of peptide phosphorylation effects in a bilayer environment.
    Jones DH; Barber KR; Grant CW
    Biochemistry; 1998 May; 37(20):7504-8. PubMed ID: 9585564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of Peptide nanotubes in an organic solvent.
    Krysmann MJ; Castelletto V; McKendrick JE; Clifton LA; W Hamley I; Harris PJ; King SM
    Langmuir; 2008 Aug; 24(15):8158-62. PubMed ID: 18572891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide nanotubes.
    Hamley IW
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):6866-81. PubMed ID: 24920517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion channel models based on self-assembling cyclic peptide nanotubes.
    Montenegro J; Ghadiri MR; Granja JR
    Acc Chem Res; 2013 Dec; 46(12):2955-65. PubMed ID: 23898935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotube network transistors from peptide-wrapped single-walled carbon nanotubes.
    Panhuis Mi; Gowrisanker S; Vanesko DJ; Mire CA; Jia H; Xie H; Baughman RH; Musselman IH; Gnade BE; Dieckmann GR; Draper RK
    Small; 2005 Aug; 1(8-9):820-3. PubMed ID: 17193531
    [No Abstract]   [Full Text] [Related]  

  • 19. Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology.
    Adler-Abramovich L; Gazit E
    J Pept Sci; 2008 Feb; 14(2):217-23. PubMed ID: 18035858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of amylin(20-29) amide-bond derivatives into helical ribbons and peptide nanotubes rather than fibrils.
    Elgersma RC; Meijneke T; Posthuma G; Rijkers DT; Liskamp RM
    Chemistry; 2006 May; 12(14):3714-25. PubMed ID: 16528792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.