These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26942749)

  • 1. State-Space Analysis of Granger-Geweke Causality Measures with Application to fMRI.
    Solo V
    Neural Comput; 2016 May; 28(5):914-49. PubMed ID: 26942749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kernel Granger causality mapping effective connectivity on FMRI data.
    Liao W; Marinazzo D; Pan Z; Gong Q; Chen H
    IEEE Trans Med Imaging; 2009 Nov; 28(11):1825-35. PubMed ID: 19709972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing brain networks with PCA and conditional Granger causality.
    Zhou Z; Chen Y; Ding M; Wright P; Lu Z; Liu Y
    Hum Brain Mapp; 2009 Jul; 30(7):2197-206. PubMed ID: 18830956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of filtering on Granger causality based multivariate causality measures.
    Florin E; Gross J; Pfeifer J; Fink GR; Timmermann L
    Neuroimage; 2010 Apr; 50(2):577-88. PubMed ID: 20026279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning effective connectivity from fMRI using autoregressive hidden Markov model with missing data.
    Dang S; Chaudhury S; Lall B; Roy PK
    J Neurosci Methods; 2017 Feb; 278():87-100. PubMed ID: 28065836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis.
    Deshpande G; Hu X
    Brain Connect; 2012; 2(5):235-45. PubMed ID: 23016794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of multivariate Granger causality analyses with embedded dimension reduction on network modules.
    Schmidt C; Pester B; Nagarajan M; Witte H; Leistritz L; Wismueller A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2797-800. PubMed ID: 25570572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Akaike causality in state space. Instantaneous causality between visual cortex in fMRI time series.
    Wong KF; Ozaki T
    Biol Cybern; 2007 Aug; 97(2):151-7. PubMed ID: 17579884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GMAC: a Matlab toolbox for spectral Granger causality analysis of fMRI data.
    Tana MG; Sclocco R; Bianchi AM
    Comput Biol Med; 2012 Oct; 42(10):943-56. PubMed ID: 22925560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint EEG/fMRI state space model for the detection of directed interactions in human brains--a simulation study.
    Lenz M; Musso M; Linke Y; Tüscher O; Timmer J; Weiller C; Schelter B
    Physiol Meas; 2011 Nov; 32(11):1725-36. PubMed ID: 22027197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The boundaries of state-space Granger causality analysis applied to BOLD simulated data: A comparative modelling and simulation approach.
    Fernandes TT; Direito B; Sayal A; Pereira J; Andrade A; Castelo-Branco M
    J Neurosci Methods; 2020 Jul; 341():108758. PubMed ID: 32416276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring frequency domain granger causality for multiple blocks of interacting time series.
    Faes L; Nollo G
    Biol Cybern; 2013 Apr; 107(2):217-32. PubMed ID: 23358681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling.
    Seth AK; Chorley P; Barnett LC
    Neuroimage; 2013 Jan; 65():540-55. PubMed ID: 23036449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal Granger causality: a new framework.
    Luo Q; Lu W; Cheng W; Valdes-Sosa PA; Wen X; Ding M; Feng J
    Neuroimage; 2013 Oct; 79():241-63. PubMed ID: 23643924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lag-based effective connectivity applied to fMRI: a simulation study highlighting dependence on experimental parameters and formulation.
    Rodrigues J; Andrade A
    Neuroimage; 2014 Apr; 89():358-77. PubMed ID: 24513528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate dynamical systems-based estimation of causal brain interactions in fMRI: Group-level validation using benchmark data, neurophysiological models and human connectome project data.
    Ryali S; Chen T; Supekar K; Tu T; Kochalka J; Cai W; Menon V
    J Neurosci Methods; 2016 Aug; 268():142-53. PubMed ID: 27015792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Granger causality.
    Faes L; Nollo G; Stramaglia S; Marinazzo D
    Phys Rev E; 2017 Oct; 96(4-1):042150. PubMed ID: 29347576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale causal connectivity analysis by canonical correlation: theory and application to epileptic brain.
    Wu GR; Chen F; Kang D; Zhang X; Marinazzo D; Chen H
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3088-96. PubMed ID: 21788178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.