These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 26942773)

  • 1. Rapid identification of antibiotic resistance using droplet microfluidics.
    Keays MC; O'Brien M; Hussain A; Kiely PA; Dalton T
    Bioengineered; 2016 Apr; 7(2):79-87. PubMed ID: 26942773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining deep learning and droplet microfluidics for rapid and label-free antimicrobial susceptibility testing of colistin.
    Riti J; Sutra G; Naas T; Volland H; Simon S; Perez-Toralla K
    Biosens Bioelectron; 2024 Aug; 257():116301. PubMed ID: 38663322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adhesive Tape Microfluidics with an Autofocusing Module That Incorporates CRISPR Interference: Applications to Long-Term Bacterial Antibiotic Studies.
    Kong T; Backes N; Kalwa U; Legner C; Phillips GJ; Pandey S
    ACS Sens; 2019 Oct; 4(10):2638-2645. PubMed ID: 31583880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device.
    Kim KP; Kim YG; Choi CH; Kim HE; Lee SH; Chang WS; Lee CS
    Lab Chip; 2010 Dec; 10(23):3296-9. PubMed ID: 20938507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations.
    Postek W; Garstecki P
    Acc Chem Res; 2022 Mar; 55(5):605-615. PubMed ID: 35119826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combating Antimicrobial Resistance via Single-Cell Diagnostic Technologies Powered by Droplet Microfluidics.
    Hsieh K; Mach KE; Zhang P; Liao JC; Wang TH
    Acc Chem Res; 2022 Jan; 55(2):123-133. PubMed ID: 34898173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet microfluidics for microbiology: techniques, applications and challenges.
    Kaminski TS; Scheler O; Garstecki P
    Lab Chip; 2016 Jun; 16(12):2168-87. PubMed ID: 27212581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform.
    Kaushik AM; Hsieh K; Chen L; Shin DJ; Liao JC; Wang TH
    Biosens Bioelectron; 2017 Nov; 97():260-266. PubMed ID: 28609716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofluidic Immobilization and Growth Detection of
    Busche JF; Möller S; Klein AK; Stehr M; Purr F; Bassu M; Burg TP; Dietzel A
    Biosensors (Basel); 2020 Sep; 10(10):. PubMed ID: 32992799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrooptical Analysis of Microbial Cell Suspensions forDetermination of Antibiotic Resistance.
    Guliy OI; Bunin VD; Korzhenevich VI; Volkov AA; Ignatov OV
    Cell Biochem Biophys; 2016 Dec; 74(4):537-544. PubMed ID: 27638046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Label-Free Droplet Sorting Platform Integrating Dielectrophoretic Separation for Estimating Bacterial Antimicrobial Resistance.
    Yan JD; Yang CY; Han A; Wu CC
    Biosensors (Basel); 2024 Apr; 14(5):. PubMed ID: 38785691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-on-hydrogel platform made of agar and alginate for rapid, low-cost, multidimensional test of antimicrobial susceptibility.
    Sun H; Liu Z; Hu C; Ren K
    Lab Chip; 2016 Aug; 16(16):3130-8. PubMed ID: 27452345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibiotic Susceptibility Test with Surface-Enhanced Raman Scattering in a Microfluidic System.
    Chang KW; Cheng HW; Shiue J; Wang JK; Wang YL; Huang NT
    Anal Chem; 2019 Sep; 91(17):10988-10995. PubMed ID: 31387345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cascaded Droplet Microfluidic Platform Enables High-Throughput Single Cell Antibiotic Susceptibility Testing at Scale.
    Zhang P; Kaushik AM; Hsieh K; Li S; Lewis S; Mach KE; Liao JC; Carroll KC; Wang TH
    Small Methods; 2022 Jan; 6(1):e2101254. PubMed ID: 35041266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid method for post-antibiotic bacterial susceptibility testing.
    Heller AA; Spence DM
    PLoS One; 2019; 14(1):e0210534. PubMed ID: 30629681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A spectroturbidimetric method of rapid evaluation of microbial sensitivity to antibiotics].
    Iosipenko AD; Shchegolev SIu; Shenderov BA; Ignatov VV; Navashin SM
    Antibiot Med Biotekhnol; 1985 Mar; 30(3):208-12. PubMed ID: 3893313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet microfluidics based microseparation systems.
    Xiao Z; Niu M; Zhang B
    J Sep Sci; 2012 Jun; 35(10-11):1284-93. PubMed ID: 22733508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic filter device coupled mass spectrometry for rapid bacterial antimicrobial resistance analysis.
    Zhang D; Zhang Y; Yin F; Qin Q; Bi H; Liu B; Qiao L
    Analyst; 2021 Jan; 146(2):515-520. PubMed ID: 33215621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Distribution and diversity of conjugative plasmids among some multiple antibiotic resistant E.coli strains isolated from river waters].
    Cernat R; Lazăr V; Balotescu C; Cotar A; Coipan E; Cojocaru C
    Bacteriol Virusol Parazitol Epidemiol; 2002; 47(3-4):147-53. PubMed ID: 15085604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial persistence as a phenotypic switch.
    Balaban NQ; Merrin J; Chait R; Kowalik L; Leibler S
    Science; 2004 Sep; 305(5690):1622-5. PubMed ID: 15308767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.