These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 26943158)
1. Instability and Breakup of Model Tear Films. Bhamla MS; Chai C; Rabiah NI; Frostad JM; Fuller GG Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):949-58. PubMed ID: 26943158 [TBL] [Abstract][Full Text] [Related]
2. Dynamic interfacial properties of human tear-lipid films and their interactions with model-tear proteins in vitro. Svitova TF; Lin MC Adv Colloid Interface Sci; 2016 Jul; 233():4-24. PubMed ID: 26830077 [TBL] [Abstract][Full Text] [Related]
3. Consequences of interfacial viscoelasticity on thin film stability. Rosenfeld L; Fuller GG Langmuir; 2012 Oct; 28(40):14238-44. PubMed ID: 22989061 [TBL] [Abstract][Full Text] [Related]
5. Lipid order, saturation and surface property relationships: a study of human meibum saturation. Mudgil P; Borchman D; Yappert MC; Duran D; Cox GW; Smith RJ; Bhola R; Dennis GR; Whitehall JS Exp Eye Res; 2013 Nov; 116():79-85. PubMed ID: 23973715 [TBL] [Abstract][Full Text] [Related]
6. The real reason for having a meibomian lipid layer covering the outer surface of the tear film - A review. Millar TJ; Schuett BS Exp Eye Res; 2015 Aug; 137():125-38. PubMed ID: 25981748 [TBL] [Abstract][Full Text] [Related]
7. Water-evaporation reduction by duplex films: application to the human tear film. Cerretani CF; Ho NH; Radke CJ Adv Colloid Interface Sci; 2013 Sep; 197-198():33-57. PubMed ID: 23694847 [TBL] [Abstract][Full Text] [Related]
9. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films. Sledge SM; Khimji H; Borchman D; Oliver AL; Michael H; Dennis EK; Gerlach D; Bhola R; Stephen E Ocul Surf; 2016 Oct; 14(4):447-459. PubMed ID: 27395776 [TBL] [Abstract][Full Text] [Related]
10. An investigation of the likely role of (O-acyl) ω-hydroxy fatty acids in meibomian lipid films using (O-oleyl) ω-hydroxy palmitic acid as a model. Schuett BS; Millar TJ Exp Eye Res; 2013 Oct; 115():57-64. PubMed ID: 23792170 [TBL] [Abstract][Full Text] [Related]
12. Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids. Georgiev GA; Yokoi N; Ivanova S; Tonchev V; Nencheva Y; Krastev R Soft Matter; 2014 Aug; 10(30):5579-88. PubMed ID: 24959988 [TBL] [Abstract][Full Text] [Related]
13. Lens-care-solution-induced alterations in dynamic interfacial properties of human tear-lipid films. Svitova TF; Lin MC Cont Lens Anterior Eye; 2014 Oct; 37(5):368-76. PubMed ID: 25034176 [TBL] [Abstract][Full Text] [Related]
17. The influence of protein deposition on contact lens tear film stability. Rabiah NI; Scales CW; Fuller GG Colloids Surf B Biointerfaces; 2019 Aug; 180():229-236. PubMed ID: 31054463 [TBL] [Abstract][Full Text] [Related]
18. Effects of keratin and lung surfactant proteins on the surface activity of meibomian lipids. Palaniappan CK; Schütt BS; Bräuer L; Schicht M; Millar TJ Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):2571-81. PubMed ID: 23482461 [TBL] [Abstract][Full Text] [Related]
19. Lipid deposition on hydrogel contact lenses: how history can help us today. Lorentz H; Jones L Optom Vis Sci; 2007 Apr; 84(4):286-95. PubMed ID: 17435512 [TBL] [Abstract][Full Text] [Related]
20. Sebum/Meibum Surface Film Interactions and Phase Transitional Differences. Mudgil P; Borchman D; Gerlach D; Yappert MC Invest Ophthalmol Vis Sci; 2016 May; 57(6):2401-11. PubMed ID: 27145473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]