These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26943272)

  • 1. Effect of Particulate Contaminants on the Development of Biofilms at Air/Water Interfaces.
    Zhang Z; Christopher G
    Langmuir; 2016 Mar; 32(11):2724-30. PubMed ID: 26943272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying bacterial hydrophobicity and biofilm formation at liquid-liquid interfaces through interfacial rheology and pendant drop tensiometry.
    Rühs PA; Böcker L; Inglis RF; Fischer P
    Colloids Surf B Biointerfaces; 2014 May; 117():174-84. PubMed ID: 24632390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Films of bacteria at interfaces.
    Vaccari L; Molaei M; Niepa THR; Lee D; Leheny RL; Stebe KJ
    Adv Colloid Interface Sci; 2017 Sep; 247():561-572. PubMed ID: 28778342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm formation at oil-water interfaces is not a simple function of bacterial hydrophobicity.
    Subbiahdoss G; Reimhult E
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111163. PubMed ID: 32554257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular determinants of mechanical properties of V. cholerae biofilms at the air-liquid interface.
    Hollenbeck EC; Fong JC; Lim JY; Yildiz FH; Fuller GG; Cegelski L
    Biophys J; 2014 Nov; 107(10):2245-52. PubMed ID: 25418293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and microstructural insights of Vibrio cholerae and Escherichia coli dual-species biofilm at the air-liquid interface.
    Abriat C; Enriquez K; Virgilio N; Cegelski L; Fuller GG; Daigle F; Heuzey MC
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110786. PubMed ID: 31954270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial rheology of stable and weakly aggregated two-dimensional suspensions.
    Reynaert S; Moldenaers P; Vermant J
    Phys Chem Chem Phys; 2007 Dec; 9(48):6463-75. PubMed ID: 18060178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of shear on initial bacterial attachment in slow flowing systems.
    Wang H; Sodagari M; Ju LK; Zhang Newby BM
    Colloids Surf B Biointerfaces; 2013 Sep; 109():32-9. PubMed ID: 23603040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment.
    Zhang C; Liao Q; Chen R; Zhu X
    Biochem Biophys Res Commun; 2015 Jun; 461(4):671-6. PubMed ID: 25918022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water-air and water-oil interfaces.
    Xu L; Han G; Hu J; He Y; Pan J; Li Y; Xiang J
    Phys Chem Chem Phys; 2009 Aug; 11(30):6490-7. PubMed ID: 19809681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer, attachment, and formation of biofilms by Escherichia coli O157:H7 on meat-contact surface materials.
    Simpson Beauchamp C; Dourou D; Geornaras I; Yoon Y; Scanga JA; Belk KE; Smith GC; Nychas GJ; Sofos JN
    J Food Sci; 2012 Jun; 77(6):M343-7. PubMed ID: 22582718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilms at interfaces: microbial distribution in floating films.
    Desai N; Ardekani AM
    Soft Matter; 2020 Feb; 16(7):1731-1750. PubMed ID: 31976509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of amyloid-integrated biofilms formed by uropathogenic Escherichia coli at the air-liquid interface.
    Wu C; Lim JY; Fuller GG; Cegelski L
    Biophys J; 2012 Aug; 103(3):464-471. PubMed ID: 22947862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria.
    Simões LC; Simões M; Vieira MJ
    Antonie Van Leeuwenhoek; 2010 Oct; 98(3):317-29. PubMed ID: 20405208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of heat, acidification, and chlorination on Salmonella enterica serovar typhimurium cells in a biofilm formed at the air-liquid interface.
    Scher K; Romling U; Yaron S
    Appl Environ Microbiol; 2005 Mar; 71(3):1163-8. PubMed ID: 15746314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Behavior of a Bacillus subtilis Pellicle.
    Hollenbeck EC; Douarche C; Allain JM; Roger P; Regeard C; Cegelski L; Fuller GG; Raspaud E
    J Phys Chem B; 2016 Jul; 120(26):6080-8. PubMed ID: 27046510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved and versatile methodology to quantify biofilms formed on solid surfaces and exposed to the air-liquid interphase.
    Paytubi S; Guirado P; Balsalobre C; Madrid C
    J Microbiol Methods; 2014 Aug; 103():77-9. PubMed ID: 24892512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces.
    Gómez-Suárez C; Busscher HJ; van der Mei HC
    Appl Environ Microbiol; 2001 Jun; 67(6):2531-7. PubMed ID: 11375160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.