These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26943326)
1. Nitro-Arachidonic Acid Prevents Angiotensin II-Induced Mitochondrial Dysfunction in a Cell Line of Kidney Proximal Tubular Cells. Sánchez-Calvo B; Cassina A; Rios N; Peluffo G; Boggia J; Radi R; Rubbo H; Trostchansky A PLoS One; 2016; 11(3):e0150459. PubMed ID: 26943326 [TBL] [Abstract][Full Text] [Related]
2. Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. Lee DY; Wauquier F; Eid AA; Roman LJ; Ghosh-Choudhury G; Khazim K; Block K; Gorin Y J Biol Chem; 2013 Oct; 288(40):28668-86. PubMed ID: 23940049 [TBL] [Abstract][Full Text] [Related]
3. Angiotensin II-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals. Hannken T; Schroeder R; Stahl RA; Wolf G Kidney Int; 1998 Dec; 54(6):1923-33. PubMed ID: 9853257 [TBL] [Abstract][Full Text] [Related]
4. Arachidonic acid metabolites inhibit the stimulatory effect of angiotensin II in renal proximal tubules. Li Y; Yamada H; Kita Y; Suzuki M; Endo Y; Horita S; Yamazaki O; Shimizu T; Seki G; Fujita T Hypertens Res; 2008 Dec; 31(12):2155-64. PubMed ID: 19139605 [TBL] [Abstract][Full Text] [Related]
5. Angiotensin II induces mitochondrial dysfunction and promotes apoptosis via JNK signalling pathway in primary mouse calvaria osteoblast. Li G; Wang M; Hao L; Loo WT; Jin L; Cheung MN; Chow LW; Ng EL Arch Oral Biol; 2014 May; 59(5):513-23. PubMed ID: 24632094 [TBL] [Abstract][Full Text] [Related]
6. Diglycolic acid inhibits succinate dehydrogenase activity in human proximal tubule cells leading to mitochondrial dysfunction and cell death. Landry GM; Dunning CL; Conrad T; Hitt MJ; McMartin KE Toxicol Lett; 2013 Aug; 221(3):176-84. PubMed ID: 23827505 [TBL] [Abstract][Full Text] [Related]
8. Defective nitric oxide production impairs angiotensin II-induced Na-K-ATPase regulation in spontaneously hypertensive rats. Javkhedkar AA; Lokhandwala MF; Banday AA Am J Physiol Renal Physiol; 2012 Jan; 302(1):F47-51. PubMed ID: 21900450 [TBL] [Abstract][Full Text] [Related]
9. Novel Roles for Peroxynitrite in Angiotensin II and CaMKII Signaling. Zhou C; Ramaswamy SS; Johnson DE; Vitturi DA; Schopfer FJ; Freeman BA; Hudmon A; Levitan ES Sci Rep; 2016 Apr; 6():23416. PubMed ID: 27079272 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Doughan AK; Harrison DG; Dikalov SI Circ Res; 2008 Feb; 102(4):488-96. PubMed ID: 18096818 [TBL] [Abstract][Full Text] [Related]
11. Prohibitin protects proximal tubule epithelial cells against oxidative injury through mitochondrial pathways. Ye J; Li J; Xia R; Zhou M; Yu L Free Radic Res; 2015; 49(11):1393-403. PubMed ID: 26198983 [TBL] [Abstract][Full Text] [Related]
12. A potential mechanism for proximal tubule angiotensin II-mediated sodium flux associated with receptor-mediated endocytosis and arachidonic acid release. Becker BN; Harris RC Kidney Int Suppl; 1996 Dec; 57():S66-72. PubMed ID: 8941925 [TBL] [Abstract][Full Text] [Related]
13. Peroxynitrite nitrates adenine nucleotide translocase and voltage-dependent anion channel 1 and alters their interactions and association with hexokinase II in mitochondria. Yang M; Xu Y; Heisner JS; Sun J; Stowe DF; Kwok WM; Camara AKS Mitochondrion; 2019 May; 46():380-392. PubMed ID: 30391711 [TBL] [Abstract][Full Text] [Related]
14. Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. Feliers D; Gorin Y; Ghosh-Choudhury G; Abboud HE; Kasinath BS Am J Physiol Renal Physiol; 2006 Apr; 290(4):F927-36. PubMed ID: 16249273 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of regulation of Na+ transport by angiotensin II in primary renal cells. Han HJ; Park SH; Koh HJ; Taub M Kidney Int; 2000 Jun; 57(6):2457-67. PubMed ID: 10844614 [TBL] [Abstract][Full Text] [Related]
16. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Onozato ML; Tojo A; Goto A; Fujita T; Wilcox CS Kidney Int; 2002 Jan; 61(1):186-94. PubMed ID: 11786100 [TBL] [Abstract][Full Text] [Related]
17. Loss of biphasic effect on Na/K-ATPase activity by angiotensin II involves defective angiotensin type 1 receptor-nitric oxide signaling. Banday AA; Lokhandwala MF Hypertension; 2008 Dec; 52(6):1099-105. PubMed ID: 18955661 [TBL] [Abstract][Full Text] [Related]
18. Glycyrrhizae Radix attenuates peroxynitrite-induced renal oxidative damage through inhibition of protein nitration. Yokozawa T; Cho EJ; Rhyu DY; Shibahara N; Aoyagi K Free Radic Res; 2005 Feb; 39(2):203-11. PubMed ID: 15763968 [TBL] [Abstract][Full Text] [Related]
19. Angiotensin IV stimulates plasminogen activator inhibitor-1 expression in proximal tubular epithelial cells. Gesualdo L; Ranieri E; Monno R; Rossiello MR; Colucci M; Semeraro N; Grandaliano G; Schena FP; Ursi M; Cerullo G Kidney Int; 1999 Aug; 56(2):461-70. PubMed ID: 10432384 [TBL] [Abstract][Full Text] [Related]
20. Selective antagonism of the AT1 receptor inhibits the effect of angiotensin II on DNA and protein synthesis of rat proximal tubular cells. Weerackody RP; Chatterjee PK; Mistry SK; McLaren J; Hawksworth GM; McLay JS Exp Nephrol; 1997; 5(3):253-62. PubMed ID: 9208286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]