BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26944189)

  • 1. Increasing extracellular H2O2 produces a bi-phasic response in intracellular H2O2, with peroxiredoxin hyperoxidation only triggered once the cellular H2O2-buffering capacity is overwhelmed.
    Tomalin LE; Day AM; Underwood ZE; Smith GR; Dalle Pezze P; Rallis C; Patel W; Dickinson BC; Bähler J; Brewer TF; Chang CJ; Shanley DP; Veal EA
    Free Radic Biol Med; 2016 Jun; 95():333-48. PubMed ID: 26944189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperoxidation of Peroxiredoxins: Gain or Loss of Function?
    Veal EA; Underwood ZE; Tomalin LE; Morgan BA; Pillay CS
    Antioxid Redox Signal; 2018 Mar; 28(7):574-590. PubMed ID: 28762774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1.
    Truzzi DR; Coelho FR; Paviani V; Alves SV; Netto LES; Augusto O
    J Biol Chem; 2019 Sep; 294(38):14055-14067. PubMed ID: 31366734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine.
    Peskin AV; Dickerhof N; Poynton RA; Paton LN; Pace PE; Hampton MB; Winterbourn CC
    J Biol Chem; 2013 May; 288(20):14170-14177. PubMed ID: 23543738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide.
    Pannala VR; Dash RK
    Free Radic Biol Med; 2015 Jan; 78():42-55. PubMed ID: 25451645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival.
    Day AM; Brown JD; Taylor SR; Rand JD; Morgan BA; Veal EA
    Mol Cell; 2012 Feb; 45(3):398-408. PubMed ID: 22245228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A peroxiredoxin promotes H2O2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein.
    Brown JD; Day AM; Taylor SR; Tomalin LE; Morgan BA; Veal EA
    Cell Rep; 2013 Dec; 5(5):1425-35. PubMed ID: 24268782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathionylation of the Active Site Cysteines of Peroxiredoxin 2 and Recycling by Glutaredoxin.
    Peskin AV; Pace PE; Behring JB; Paton LN; Soethoudt M; Bachschmid MM; Winterbourn CC
    J Biol Chem; 2016 Feb; 291(6):3053-62. PubMed ID: 26601956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Peroxiredoxins in the Transduction of H
    Rhee SG; Woo HA; Kang D
    Antioxid Redox Signal; 2018 Mar; 28(7):537-557. PubMed ID: 28587524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha.
    Kang SW; Chae HZ; Seo MS; Kim K; Baines IC; Rhee SG
    J Biol Chem; 1998 Mar; 273(11):6297-302. PubMed ID: 9497357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation.
    Stöcker S; Maurer M; Ruppert T; Dick TP
    Nat Chem Biol; 2018 Feb; 14(2):148-155. PubMed ID: 29251718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction.
    Netto LE; Antunes F
    Mol Cells; 2016 Jan; 39(1):65-71. PubMed ID: 26813662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the phenotypic repertoire of the cytoplasmic 2-Cys peroxiredoxin - Thioredoxin system. 1. Understanding commonalities and differences among cell types.
    Selvaggio G; Coelho PMBM; Salvador A
    Redox Biol; 2018 May; 15():297-315. PubMed ID: 29304480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine.
    Kang SW; Baines IC; Rhee SG
    J Biol Chem; 1998 Mar; 273(11):6303-11. PubMed ID: 9497358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid.
    Yang KS; Kang SW; Woo HA; Hwang SC; Chae HZ; Kim K; Rhee SG
    J Biol Chem; 2002 Oct; 277(41):38029-36. PubMed ID: 12161445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of an efficient endoplasmic reticulum-localized recycling system protects peroxiredoxin IV from hyperoxidation.
    Cao Z; Subramaniam S; Bulleid NJ
    J Biol Chem; 2014 Feb; 289(9):5490-8. PubMed ID: 24403061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction.
    Latimer HR; Veal EA
    Mol Cells; 2016 Jan; 39(1):40-5. PubMed ID: 26813660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pancreatic β-cells detoxify H
    Stancill JS; Broniowska KA; Oleson BJ; Naatz A; Corbett JA
    J Biol Chem; 2019 Mar; 294(13):4843-4853. PubMed ID: 30659092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural snapshots of yeast alkyl hydroperoxide reductase Ahp1 peroxiredoxin reveal a novel two-cysteine mechanism of electron transfer to eliminate reactive oxygen species.
    Lian FM; Yu J; Ma XX; Yu XJ; Chen Y; Zhou CZ
    J Biol Chem; 2012 May; 287(21):17077-17087. PubMed ID: 22474296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive analysis of the peroxiredoxin reduction system in the Cyanobacterium Synechocystis sp. strain PCC 6803 reveals that all five peroxiredoxins are thioredoxin dependent.
    Pérez-Pérez ME; Mata-Cabana A; Sánchez-Riego AM; Lindahl M; Florencio FJ
    J Bacteriol; 2009 Dec; 191(24):7477-89. PubMed ID: 19820102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.