These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 26944690)
1. Effects of follower load and rib cage on intervertebral disc pressure and sagittal plane curvature in static tests of cadaveric thoracic spines. Anderson DE; Mannen EM; Sis HL; Wong BM; Cadel ES; Friis EA; Bouxsein ML J Biomech; 2016 May; 49(7):1078-1084. PubMed ID: 26944690 [TBL] [Abstract][Full Text] [Related]
2. The rib cage reduces intervertebral disc pressures in cadaveric thoracic spines by sharing loading under applied dynamic moments. Anderson DE; Mannen EM; Tromp R; Wong BM; Sis HL; Cadel ES; Friis EA; Bouxsein ML J Biomech; 2018 Mar; 70():262-266. PubMed ID: 29106896 [TBL] [Abstract][Full Text] [Related]
3. Effect of follower load on motion and stiffness of the human thoracic spine with intact rib cage. Sis HL; Mannen EM; Wong BM; Cadel ES; Bouxsein ML; Anderson DE; Friis EA J Biomech; 2016 Oct; 49(14):3252-3259. PubMed ID: 27545081 [TBL] [Abstract][Full Text] [Related]
4. The rib cage stiffens the thoracic spine in a cadaveric model with body weight load under dynamic moments. Mannen EM; Friis EA; Sis HL; Wong BM; Cadel ES; Anderson DE J Mech Behav Biomed Mater; 2018 Aug; 84():258-264. PubMed ID: 29852313 [TBL] [Abstract][Full Text] [Related]
5. The effect of follower load on the intersegmental coupled motion characteristics of the human thoracic spine: An in vitro study using entire rib cage specimens. Liebsch C; Graf N; Wilke HJ J Biomech; 2018 Sep; 78():36-44. PubMed ID: 30031651 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study. Takeuchi T; Abumi K; Shono Y; Oda I; Kaneda K Spine (Phila Pa 1976); 1999 Jul; 24(14):1414-20. PubMed ID: 10423785 [TBL] [Abstract][Full Text] [Related]
7. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation. Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316 [TBL] [Abstract][Full Text] [Related]
8. Stabilizing effect of the rib cage on adjacent segment motion following thoracolumbar posterior fixation of the human thoracic cadaveric spine: A biomechanical study. Rahm MD; Brooks DM; Harris JA; Hart RA; Hughes JL; Ferrick BJ; Bucklen BS Clin Biomech (Bristol); 2019 Dec; 70():217-222. PubMed ID: 31669919 [TBL] [Abstract][Full Text] [Related]
9. The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures. Liebsch C; Graf N; Appelt K; Wilke HJ PLoS One; 2017; 12(6):e0178733. PubMed ID: 28570671 [TBL] [Abstract][Full Text] [Related]
10. EUROSPINE 2016 FULL PAPER AWARD: Wire cerclage can restore the stability of the thoracic spine after median sternotomy: an in vitro study with entire rib cage specimens. Liebsch C; Graf N; Wilke HJ Eur Spine J; 2017 May; 26(5):1401-1407. PubMed ID: 27639711 [TBL] [Abstract][Full Text] [Related]
11. Flexion-extension response of the thoracolumbar spine under compressive follower preload. Stanley SK; Ghanayem AJ; Voronov LI; Havey RM; Paxinos O; Carandang G; Zindrick MR; Patwardhan AG Spine (Phila Pa 1976); 2004 Nov; 29(22):E510-4. PubMed ID: 15543052 [TBL] [Abstract][Full Text] [Related]
12. Mechanical Contribution of the Rib Cage in the Human Cadaveric Thoracic Spine. Mannen EM; Anderson JT; Arnold PM; Friis EA Spine (Phila Pa 1976); 2015 Jul; 40(13):E760-6. PubMed ID: 25768687 [TBL] [Abstract][Full Text] [Related]
13. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Rohlmann A; Neller S; Claes L; Bergmann G; Wilke HJ Spine (Phila Pa 1976); 2001 Dec; 26(24):E557-61. PubMed ID: 11740371 [TBL] [Abstract][Full Text] [Related]
14. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load. Zirbel SA; Stolworthy DK; Howell LL; Bowden AE Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531 [TBL] [Abstract][Full Text] [Related]
15. In vitro disc pressure profiles below scoliosis fusion constructs. Buttermann GR; Beaubien BP Spine (Phila Pa 1976); 2008 Sep; 33(20):2134-42. PubMed ID: 18794754 [TBL] [Abstract][Full Text] [Related]
16. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments. Bennett CR; Kelly BP J Biomech; 2013 Aug; 46(12):2087-92. PubMed ID: 23809771 [TBL] [Abstract][Full Text] [Related]
17. In vitro analysis of kinematics and elastostatics of the human rib cage during thoracic spinal movement for the validation of numerical models. Liebsch C; Graf N; Wilke HJ J Biomech; 2019 Sep; 94():147-157. PubMed ID: 31420155 [TBL] [Abstract][Full Text] [Related]
18. Implementation of physiological functional spinal units in a rigid-body model of the thoracolumbar spine. Wang W; Wang D; De Groote F; Scheys L; Jonkers I J Biomech; 2020 Jan; 98():109437. PubMed ID: 31679758 [TBL] [Abstract][Full Text] [Related]
19. Stability provided by the sternum and rib cage in the thoracic spine. Watkins R; Watkins R; Williams L; Ahlbrand S; Garcia R; Karamanian A; Sharp L; Vo C; Hedman T Spine (Phila Pa 1976); 2005 Jun; 30(11):1283-6. PubMed ID: 15928553 [TBL] [Abstract][Full Text] [Related]
20. Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine. Keller TS; Colloca CJ; Harrison DE; Harrison DD; Janik TJ Spine J; 2005; 5(3):297-309. PubMed ID: 15863086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]