These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
703 related articles for article (PubMed ID: 26944736)
41. Mapping a male-fertility restoration locus for the A Pucher A; Hash CT; Wallace JG; Han S; Leiser WL; Haussmann BIG BMC Plant Biol; 2018 Apr; 18(1):65. PubMed ID: 29665794 [TBL] [Abstract][Full Text] [Related]
42. Transcriptome Reveals the Dynamic Response Mechanism of Pearl Millet Roots under Drought Stress. Ji Y; Lu X; Zhang H; Luo D; Zhang A; Sun M; Wu Q; Wang X; Huang L Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946937 [TBL] [Abstract][Full Text] [Related]
43. Water extraction under terminal drought explains the genotypic differences in yield, not the anti-oxidant changes in leaves of pearl millet (Pennisetum glaucum). Kholov J; Vadez V Funct Plant Biol; 2012 Feb; 40(1):44-53. PubMed ID: 32481085 [TBL] [Abstract][Full Text] [Related]
44. Abiotic stress tolerance in pearl millet: Unraveling molecular mechanisms via transcriptomics. Dhawi F Sci Prog; 2024; 107(1):368504241237610. PubMed ID: 38500301 [TBL] [Abstract][Full Text] [Related]
45. Genomic Tools in Pearl Millet Breeding for Drought Tolerance: Status and Prospects. Serba DD; Yadav RS Front Plant Sci; 2016; 7():1724. PubMed ID: 27920783 [TBL] [Abstract][Full Text] [Related]
46. Biolistic-mediated transformation protocols for maize and pearl millet using pre-cultured immature zygotic embryos and embryogenic tissue. O'Kennedy MM; Stark HC; Dube N Methods Mol Biol; 2011; 710():343-54. PubMed ID: 21207279 [TBL] [Abstract][Full Text] [Related]
47. Transcriptional profiling in pearl millet (Pennisetum glaucum L.R. Br.) for identification of differentially expressed drought responsive genes. Choudhary M; Jayanand ; Padaria JC Physiol Mol Biol Plants; 2015 Apr; 21(2):187-96. PubMed ID: 25964713 [TBL] [Abstract][Full Text] [Related]
48. Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. Shinde H; Dudhate A; Tsugama D; Gupta SK; Liu S; Takano T Plant Physiol Biochem; 2019 Feb; 135():546-553. PubMed ID: 30447941 [TBL] [Abstract][Full Text] [Related]
49. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding. Ghatak A; Chaturvedi P; Weckwerth W Front Plant Sci; 2017; 8():757. PubMed ID: 28626463 [TBL] [Abstract][Full Text] [Related]
50. Fertile transgenic pearl millet [ Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues. Goldman JJ; Hanna WW; Fleming G; Ozias-Akins P Plant Cell Rep; 2003 Jun; 21(10):999-1009. PubMed ID: 12835911 [TBL] [Abstract][Full Text] [Related]
51. Genome-Wide Expression and Physiological Profiling of Pearl Millet Genotype Reveal the Biological Pathways and Various Gene Clusters Underlying Salt Resistance. Awan SA; Khan I; Tariq R; Rizwan M; Wang X; Zhang X; Huang L Front Plant Sci; 2022; 13():849618. PubMed ID: 35419021 [TBL] [Abstract][Full Text] [Related]
52. Drought resistance strategies in minor millets: a review. Patan SSVK; Vallepu S; Shaik KB; Shaik N; Adi Reddy NRY; Terry RG; Sergeant K; Hausman JF Planta; 2024 Jun; 260(1):29. PubMed ID: 38879859 [TBL] [Abstract][Full Text] [Related]
53. Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress. Katam R; Sakata K; Suravajhala P; Pechan T; Kambiranda DM; Naik KS; Guo B; Basha SM J Proteomics; 2016 Jun; 143():209-226. PubMed ID: 27282920 [TBL] [Abstract][Full Text] [Related]
54. Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Oumar I; Mariac C; Pham JL; Vigouroux Y Theor Appl Genet; 2008 Aug; 117(4):489-97. PubMed ID: 18504539 [TBL] [Abstract][Full Text] [Related]
55. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. Sehgal D; Rajaram V; Armstead IP; Vadez V; Yadav YP; Hash CT; Yadav RS BMC Plant Biol; 2012 Jan; 12():9. PubMed ID: 22251627 [TBL] [Abstract][Full Text] [Related]
56. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. Wang N; Zhao J; He X; Sun H; Zhang G; Wu F BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796 [TBL] [Abstract][Full Text] [Related]
57. Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease. Wu Y; Mirzaei M; Pascovici D; Chick JM; Atwell BJ; Haynes PA J Proteomics; 2016 Jun; 143():73-82. PubMed ID: 27195813 [TBL] [Abstract][Full Text] [Related]
58. Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. Sehgal D; Skot L; Singh R; Srivastava RK; Das SP; Taunk J; Sharma PC; Pal R; Raj B; Hash CT; Yadav RS PLoS One; 2015; 10(5):e0122165. PubMed ID: 25970600 [TBL] [Abstract][Full Text] [Related]
59. Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Yadav RS; Hash CT; Bidinger FR; Cavan GP; Howarth CJ Theor Appl Genet; 2002 Jan; 104(1):67-83. PubMed ID: 12579430 [TBL] [Abstract][Full Text] [Related]
60. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz). Shan Z; Luo X; Wei M; Huang T; Khan A; Zhu Y Sci Rep; 2018 Dec; 8(1):17982. PubMed ID: 30568257 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]