These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26944916)

  • 1. The Dimensionality of Genomic Information and Its Effect on Genomic Prediction.
    Pocrnic I; Lourenco DA; Masuda Y; Legarra A; Misztal I
    Genetics; 2016 May; 203(1):573-81. PubMed ID: 26944916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimensionality of genomic information and performance of the Algorithm for Proven and Young for different livestock species.
    Pocrnic I; Lourenco DA; Masuda Y; Misztal I
    Genet Sel Evol; 2016 Oct; 48(1):82. PubMed ID: 27799053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of causative quantitative trait nucleotides in single-step GBLUP.
    Fragomeni BO; Lourenco DAL; Masuda Y; Legarra A; Misztal I
    Genet Sel Evol; 2017 Jul; 49(1):59. PubMed ID: 28747171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is single-step genomic REML with the algorithm for proven and young more computationally efficient when less generations of data are present?
    Junqueira VS; Lourenco D; Masuda Y; Cardoso FF; Lopes PS; Silva FFE; Misztal I
    J Anim Sci; 2022 May; 100(5):. PubMed ID: 35289906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-dependent changes in genomic predictions using the Algorithm for Proven and Young in single-step genomic best linear unbiased prediction.
    Misztal I; Tsuruta S; Pocrnic I; Lourenco D
    J Anim Sci; 2020 Dec; 98(12):. PubMed ID: 33211798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inexpensive Computation of the Inverse of the Genomic Relationship Matrix in Populations with Small Effective Population Size.
    Misztal I
    Genetics; 2016 Feb; 202(2):401-9. PubMed ID: 26584903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient exact method to obtain GBLUP and single-step GBLUP when the genomic relationship matrix is singular.
    Fernando RL; Cheng H; Garrick DJ
    Genet Sel Evol; 2016 Oct; 48(1):80. PubMed ID: 27788669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive study on size and definition of the core group in the proven and young algorithm for single-step GBLUP.
    Abdollahi-Arpanahi R; Lourenco D; Misztal I
    Genet Sel Evol; 2022 May; 54(1):34. PubMed ID: 35596130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of genomic BLUP when considering a genomic relationship matrix based on the number of the largest eigenvalues: a simulation study.
    Pocrnic I; Lourenco DAL; Masuda Y; Misztal I
    Genet Sel Evol; 2019 Dec; 51(1):75. PubMed ID: 31830899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The quality of the algorithm for proven and young with various sets of core animals in a multibreed sheep population1.
    Nilforooshan MA; Lee M
    J Anim Sci; 2019 Mar; 97(3):1090-1100. PubMed ID: 30624671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging low-density crossbred genotypes to offset crossbred phenotypes and their impact on purebred predictions.
    Leite NG; Chen CY; Herring WO; Holl J; Tsuruta S; Lourenco D
    J Anim Sci; 2022 Dec; 100(12):. PubMed ID: 36309902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient approximation of reliabilities for single-step genomic best linear unbiased predictor models with the Algorithm for Proven and Young.
    Bermann M; Lourenco D; Misztal I
    J Anim Sci; 2022 Jan; 100(1):. PubMed ID: 34877603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical accuracy for indirect predictions based on SNP effects from single-step GBLUP.
    Garcia A; Aguilar I; Legarra A; Tsuruta S; Misztal I; Lourenco D
    Genet Sel Evol; 2022 Sep; 54(1):66. PubMed ID: 36162979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crossbred evaluations using single-step genomic BLUP and algorithm for proven and young with different sources of data1.
    Pocrnic I; Lourenco DAL; Chen CY; Herring WO; Misztal I
    J Anim Sci; 2019 Apr; 97(4):1513-1522. PubMed ID: 30726939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot topic: Use of genomic recursions in single-step genomic best linear unbiased predictor (BLUP) with a large number of genotypes.
    Fragomeni BO; Lourenco DA; Tsuruta S; Masuda Y; Aguilar I; Legarra A; Lawlor TJ; Misztal I
    J Dairy Sci; 2015 Jun; 98(6):4090-4. PubMed ID: 25864050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invited review: efficient computation strategies in genomic selection.
    Misztal I; Legarra A
    Animal; 2017 May; 11(5):731-736. PubMed ID: 27869042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale genomic prediction using singular value decomposition of the genotype matrix.
    Ødegård J; Indahl U; Strandén I; Meuwissen THE
    Genet Sel Evol; 2018 Feb; 50(1):6. PubMed ID: 29490611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensionality of genomic information and its impact on genome-wide associations and variant selection for genomic prediction: a simulation study.
    Jang S; Tsuruta S; Leite NG; Misztal I; Lourenco D
    Genet Sel Evol; 2023 Jul; 55(1):49. PubMed ID: 37460964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of genomic recursions and algorithm for proven and young animals for single-step genomic BLUP analyses--a simulation study.
    Fragomeni BO; Lourenco DA; Tsuruta S; Masuda Y; Aguilar I; Misztal I
    J Anim Breed Genet; 2015 Oct; 132(5):340-5. PubMed ID: 25857518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation of indirect predictions using genomic recursions across generations in a broiler population.
    Hidalgo J; Lourenco D; Tsuruta S; Bermann M; Breen V; Misztal I
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37837636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.