These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26945028)

  • 1. Massive Amplification at an Unselected Locus Accompanies Complex Chromosomal Rearrangements in Yeast.
    Thierry A; Khanna V; Dujon B
    G3 (Bethesda); 2016 May; 6(5):1201-15. PubMed ID: 26945028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Formation of Neochromosomes during Experimental Evolution in the Yeast
    Thierry A; Khanna V; Dujon B
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrotene chromosomes provide insights to a new mechanism of high-order gene amplification in eukaryotes.
    Thierry A; Khanna V; Créno S; Lafontaine I; Ma L; Bouchier C; Dujon B
    Nat Commun; 2015 Jan; 6():6154. PubMed ID: 25635677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin, Regulation, and Fitness Effect of Chromosomal Rearrangements in the Yeast
    Tang XX; Wen XP; Qi L; Sui Y; Zhu YX; Zheng DQ
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common industrial sake yeast strains have three copies of the AQY1-ARR3 region of chromosome XVI in their genomes.
    Ogihara F; Kitagaki H; Wang Q; Shimoi H
    Yeast; 2008 Jun; 25(6):419-32. PubMed ID: 18509847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeasty clocks: dating genomic changes in yeasts.
    Rolland T; Dujon B
    C R Biol; 2011; 334(8-9):620-8. PubMed ID: 21819943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal Rearrangements of Synthetic Yeast by SCRaMbLE.
    Luo Z; Jiang S; Dai J
    Methods Mol Biol; 2021; 2196():153-165. PubMed ID: 32889719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress.
    James TC; Usher J; Campbell S; Bond U
    Curr Genet; 2008 Mar; 53(3):139-52. PubMed ID: 18183398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chapter 6: The genomes of lager yeasts.
    Bond U
    Adv Appl Microbiol; 2009; 69():159-82. PubMed ID: 19729094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of recurrent chromosomal rearrangements and the unique relationship between low-level amplification and translocation in glioblastoma.
    Kubota H; Nishizaki T; Harada K; Harada K; Oga A; Ito H; Suzuki M; Sasaki K
    Genes Chromosomes Cancer; 2001 Jun; 31(2):125-33. PubMed ID: 11319800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined spectral karyotyping, multicolor banding, and microarray comparative genomic hybridization analysis provides a detailed characterization of complex structural chromosomal rearrangements associated with gene amplification in the osteosarcoma cell line MG-63.
    Lim G; Karaskova J; Vukovic B; Bayani J; Beheshti B; Bernardini M; Squire JA; Zielenska M
    Cancer Genet Cytogenet; 2004 Sep; 153(2):158-64. PubMed ID: 15350306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains.
    van den Broek M; Bolat I; Nijkamp JF; Ramos E; Luttik MA; Koopman F; Geertman JM; de Ridder D; Pronk JT; Daran JM
    Appl Environ Microbiol; 2015 Sep; 81(18):6253-67. PubMed ID: 26150454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting evolutionary genome dynamics between domesticated and wild yeasts.
    Yue JX; Li J; Aigrain L; Hallin J; Persson K; Oliver K; Bergström A; Coupland P; Warringer J; Lagomarsino MC; Fischer G; Durbin R; Liti G
    Nat Genet; 2017 Jun; 49(6):913-924. PubMed ID: 28416820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microevolution of Cryptococcus neoformans driven by massive tandem gene amplification.
    Chow EW; Morrow CA; Djordjevic JT; Wood IA; Fraser JA
    Mol Biol Evol; 2012 Aug; 29(8):1987-2000. PubMed ID: 22334577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering targeted chromosomal amplifications in human breast epithelial cells.
    Springer S; Yi KH; Park J; Rajpurohit A; Price AJ; Lauring J
    Breast Cancer Res Treat; 2015 Jul; 152(2):313-21. PubMed ID: 26099605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic identification of amplifications of the ADH4 and CUP1 genes of Saccharomyces cerevisiae.
    Dorsey MJ; Hoeh P; Paquin CE
    Curr Genet; 1993; 23(5-6):392-6. PubMed ID: 8319294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.
    Tosato V; Sims J; West N; Colombin M; Bruschi CV
    Curr Genet; 2017 May; 63(2):281-292. PubMed ID: 27491680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-reciprocal chromosomal bridge-induced translocation (BIT) by targeted DNA integration in yeast.
    Tosato V; Waghmare SK; Bruschi CV
    Chromosoma; 2005 May; 114(1):15-27. PubMed ID: 15843952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomal evolution in Saccharomyces.
    Fischer G; James SA; Roberts IN; Oliver SG; Louis EJ
    Nature; 2000 May; 405(6785):451-4. PubMed ID: 10839539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments.
    Koszul R; Caburet S; Dujon B; Fischer G
    EMBO J; 2004 Jan; 23(1):234-43. PubMed ID: 14685272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.