These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
528 related articles for article (PubMed ID: 26945063)
1. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. Crickard JB; Fu J; Reese JC J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063 [TBL] [Abstract][Full Text] [Related]
2. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein. Blythe AJ; Yazar-Klosinski B; Webster MW; Chen E; Vandevenne M; Bendak K; Mackay JP; Hartzog GA; Vrielink A Protein Sci; 2016 Sep; 25(9):1710-21. PubMed ID: 27376968 [TBL] [Abstract][Full Text] [Related]
3. Ubiquitin fusion constructs allow the expression and purification of multi-KOW domain complexes of the Saccharomyces cerevisiae transcription elongation factor Spt4/5. Blythe A; Gunasekara S; Walshe J; Mackay JP; Hartzog GA; Vrielink A Protein Expr Purif; 2014 Aug; 100():54-60. PubMed ID: 24859675 [TBL] [Abstract][Full Text] [Related]
4. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation. Guo M; Xu F; Yamada J; Egelhofer T; Gao Y; Hartzog GA; Teng M; Niu L Structure; 2008 Nov; 16(11):1649-58. PubMed ID: 19000817 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription. Rosen GA; Baek I; Friedman LJ; Joo YJ; Buratowski S; Gelles J Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32348-32357. PubMed ID: 33293419 [TBL] [Abstract][Full Text] [Related]
6. Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5. Meyer PA; Li S; Zhang M; Yamada K; Takagi Y; Hartzog GA; Fu J Mol Cell Biol; 2015 Oct; 35(19):3354-69. PubMed ID: 26217010 [TBL] [Abstract][Full Text] [Related]
7. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Zhou K; Kuo WH; Fillingham J; Greenblatt JF Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6956-61. PubMed ID: 19365074 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the Schizosaccharomyces pombe Spt5-Spt4 complex. Schwer B; Schneider S; Pei Y; Aronova A; Shuman S RNA; 2009 Jul; 15(7):1241-50. PubMed ID: 19460865 [TBL] [Abstract][Full Text] [Related]
9. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. Ding B; LeJeune D; Li S J Biol Chem; 2010 Feb; 285(8):5317-26. PubMed ID: 20042611 [TBL] [Abstract][Full Text] [Related]
10. Spt4 facilitates the movement of RNA polymerase II through the +2 nucleosomal barrier. Uzun Ü; Brown T; Fischl H; Angel A; Mellor J Cell Rep; 2021 Sep; 36(13):109755. PubMed ID: 34592154 [TBL] [Abstract][Full Text] [Related]
11. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. Hartzog GA; Fu J Biochim Biophys Acta; 2013 Jan; 1829(1):105-15. PubMed ID: 22982195 [TBL] [Abstract][Full Text] [Related]
12. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Hartzog GA; Wada T; Handa H; Winston F Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930 [TBL] [Abstract][Full Text] [Related]
13. Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly. Viktorovskaya OV; Appling FD; Schneider DA J Biol Chem; 2011 May; 286(21):18825-33. PubMed ID: 21467036 [TBL] [Abstract][Full Text] [Related]
14. Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription. Quan TK; Hartzog GA Genetics; 2010 Feb; 184(2):321-34. PubMed ID: 19948887 [TBL] [Abstract][Full Text] [Related]
15. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Lindstrom DL; Squazzo SL; Muster N; Burckin TA; Wachter KC; Emigh CA; McCleery JA; Yates JR; Hartzog GA Mol Cell Biol; 2003 Feb; 23(4):1368-78. PubMed ID: 12556496 [TBL] [Abstract][Full Text] [Related]
16. The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively. Anderson SJ; Sikes ML; Zhang Y; French SL; Salgia S; Beyer AL; Nomura M; Schneider DA J Biol Chem; 2011 May; 286(21):18816-24. PubMed ID: 21467039 [TBL] [Abstract][Full Text] [Related]
17. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate. García A; Collin A; Calvo O Mol Biol Cell; 2012 Nov; 23(21):4297-312. PubMed ID: 22973055 [TBL] [Abstract][Full Text] [Related]
18. The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis. Dürr J; Lolas IB; Sørensen BB; Schubert V; Houben A; Melzer M; Deutzmann R; Grasser M; Grasser KD Nucleic Acids Res; 2014 Apr; 42(7):4332-47. PubMed ID: 24497194 [TBL] [Abstract][Full Text] [Related]
19. The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome. Crickard JB; Lee J; Lee TH; Reese JC Nucleic Acids Res; 2017 Jun; 45(11):6362-6374. PubMed ID: 28379497 [TBL] [Abstract][Full Text] [Related]
20. The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex. Mayekar MK; Gardner RG; Arndt KM Mol Cell Biol; 2013 Aug; 33(16):3259-73. PubMed ID: 23775116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]