These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26945118)
1. Stability of plasma treated superhydrophobic surfaces under different ambient conditions. Chen F; Liu J; Cui Y; Huang S; Song J; Sun J; Xu W; Liu X J Colloid Interface Sci; 2016 May; 470():221-228. PubMed ID: 26945118 [TBL] [Abstract][Full Text] [Related]
2. Superhydrophobicity of natural and artificial surfaces under controlled condensation conditions. Yin L; Zhu L; Wang Q; Ding J; Chen Q ACS Appl Mater Interfaces; 2011 Apr; 3(4):1254-60. PubMed ID: 21443252 [TBL] [Abstract][Full Text] [Related]
3. Wettability control of ZnO nanoparticles for universal applications. Lee M; Kwak G; Yong K ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107 [TBL] [Abstract][Full Text] [Related]
4. Durability and restoring of superhydrophobic properties in silica-based coatings. Mahadik SA; Fernando PD; Hegade ND; Wagh PB; Gupta SC J Colloid Interface Sci; 2013 Sep; 405():262-8. PubMed ID: 23746435 [TBL] [Abstract][Full Text] [Related]
5. From hydrophobic to superhydrophobic and superhydrophilic siloxanes by thermal treatment. Karapanagiotis I; Manoudis PN; Zurba A; Lampakis D Langmuir; 2014 Nov; 30(44):13235-43. PubMed ID: 25313653 [TBL] [Abstract][Full Text] [Related]
6. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation. Su X; Li H; Lai X; Zhang L; Liang T; Feng Y; Zeng X ACS Appl Mater Interfaces; 2017 Jan; 9(3):3131-3141. PubMed ID: 28032982 [TBL] [Abstract][Full Text] [Related]
7. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
8. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Yan YY; Gao N; Barthlott W Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918 [TBL] [Abstract][Full Text] [Related]
9. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes. Li J; Jing Z; Zha F; Yang Y; Wang Q; Lei Z ACS Appl Mater Interfaces; 2014 Jun; 6(11):8868-77. PubMed ID: 24807195 [TBL] [Abstract][Full Text] [Related]
10. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates. Zhang Qb; Xu D; Hung TF; Zhang K Nanotechnology; 2013 Feb; 24(6):065602. PubMed ID: 23340193 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires. Peng S; Tian D; Yang X; Deng W ACS Appl Mater Interfaces; 2014 Apr; 6(7):4831-41. PubMed ID: 24593862 [TBL] [Abstract][Full Text] [Related]
12. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure. Mockenhaupt B; Ensikat HJ; Spaeth M; Barthlott W Langmuir; 2008 Dec; 24(23):13591-7. PubMed ID: 18959433 [TBL] [Abstract][Full Text] [Related]
13. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures. Basu BJ; Manasa J J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844 [TBL] [Abstract][Full Text] [Related]
14. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films. Liu Y; Lin Z; Lin W; Moon KS; Wong CP ACS Appl Mater Interfaces; 2012 Aug; 4(8):3959-64. PubMed ID: 22764733 [TBL] [Abstract][Full Text] [Related]
15. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces. Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148 [TBL] [Abstract][Full Text] [Related]
16. Verification of icephobic/anti-icing properties of a superhydrophobic surface. Wang Y; Xue J; Wang Q; Chen Q; Ding J ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional polymethylsilsesquioxane (PMSQ) surfaces prepared by electrospinning at the sol-gel transition: superhydrophobicity, excellent solvent resistance, thermal stability and enhanced sound absorption property. Xiang H; Zhang L; Wang Z; Yu X; Long Y; Zhang X; Zhao N; Xu J J Colloid Interface Sci; 2011 Jul; 359(1):296-303. PubMed ID: 21492863 [TBL] [Abstract][Full Text] [Related]
19. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel. Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation. Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]