These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
451 related articles for article (PubMed ID: 26945484)
1. Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid. Miwa Y; Hamamoto H; Ishida T Eur J Pharm Biopharm; 2016 May; 102():92-100. PubMed ID: 26945484 [TBL] [Abstract][Full Text] [Related]
2. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: Development, ex-vivo and in-vivo evaluation. Goindi S; Kaur R; Kaur R Int J Pharm; 2015 Nov; 495(2):913-23. PubMed ID: 26456294 [TBL] [Abstract][Full Text] [Related]
3. Transformation of acidic poorly water soluble drugs into ionic liquids. Balk A; Wiest J; Widmer T; Galli B; Holzgrabe U; Meinel L Eur J Pharm Biopharm; 2015 Aug; 94():73-82. PubMed ID: 25976317 [TBL] [Abstract][Full Text] [Related]
4. Ionic liquid - microemulsions assisting in the transdermal delivery of Dencichine: Preparation, in-vitro and in-vivo evaluations, and investigation of the permeation mechanism. Wang C; Zhu J; Zhang D; Yang Y; Zheng L; Qu Y; Yang X; Cui X Int J Pharm; 2018 Jan; 535(1-2):120-131. PubMed ID: 29104058 [TBL] [Abstract][Full Text] [Related]
5. The molecular assembly of the ionic liquid/aliphatic carboxylic acid/aliphatic amine as effective and safety transdermal permeation enhancers. Kubota K; Shibata A; Yamaguchi T Eur J Pharm Sci; 2016 Apr; 86():75-83. PubMed ID: 26965004 [TBL] [Abstract][Full Text] [Related]
6. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: ketoprofen, lidocaine, and caffeine. Zhang J; Michniak-Kohn B Int J Pharm; 2011 Dec; 421(1):34-44. PubMed ID: 21959104 [TBL] [Abstract][Full Text] [Related]
7. Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: characterization and cytotoxicity evaluation. Moniruzzaman M; Tamura M; Tahara Y; Kamiya N; Goto M Int J Pharm; 2010 Nov; 400(1-2):243-50. PubMed ID: 20813174 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of transdermal delivery of artemisinin using microemulsion vehicle based on ionic liquid and lidocaine ibuprofen. Zhang Y; Cao Y; Meng X; Li C; Wang H; Zhang S Colloids Surf B Biointerfaces; 2020 May; 189():110886. PubMed ID: 32109824 [TBL] [Abstract][Full Text] [Related]
9. Choline- versus imidazole-based ionic liquids as functional ingredients in topical delivery systems: cytotoxicity, solubility, and skin permeation studies. Santos de Almeida T; Júlio A; Saraiva N; Fernandes AS; Araújo MEM; Baby AR; Rosado C; Mota JP Drug Dev Ind Pharm; 2017 Nov; 43(11):1858-1865. PubMed ID: 28665154 [TBL] [Abstract][Full Text] [Related]
10. In vitro and ex vivo permeation studies of etodolac from hydrophilic gels and effect of terpenes as enhancers. Tas C; Ozkan Y; Okyar A; Savaser A Drug Deliv; 2007 Oct; 14(7):453-9. PubMed ID: 17994363 [TBL] [Abstract][Full Text] [Related]
11. Ionic liquids as potential enhancers for transdermal drug delivery. Monti D; Egiziano E; Burgalassi S; Chetoni P; Chiappe C; Sanzone A; Tampucci S Int J Pharm; 2017 Jan; 516(1-2):45-51. PubMed ID: 27836753 [TBL] [Abstract][Full Text] [Related]
12. Development of gliclazide ionic liquid and the transdermal patches: An effective and noninvasive sustained release formulation to achieve hypoglycemic effects. Zhou B; Liu S; Yin H; Qi M; Hong M; Ren GB Eur J Pharm Sci; 2021 Sep; 164():105915. PubMed ID: 34146681 [TBL] [Abstract][Full Text] [Related]
13. Transdermal permeation of drugs with differing lipophilicity: Effect of penetration enhancer camphor. Xie F; Chai JK; Hu Q; Yu YH; Ma L; Liu LY; Zhang XL; Li BL; Zhang DH Int J Pharm; 2016 Jun; 507(1-2):90-101. PubMed ID: 27154251 [TBL] [Abstract][Full Text] [Related]
15. Transformation of poorly water-soluble drugs into lipophilic ionic liquids enhances oral drug exposure from lipid based formulations. Sahbaz Y; Williams HD; Nguyen TH; Saunders J; Ford L; Charman SA; Scammells PJ; Porter CJ Mol Pharm; 2015 Jun; 12(6):1980-91. PubMed ID: 25905624 [TBL] [Abstract][Full Text] [Related]
16. Effect of surfactant concentration on transdermal lidocaine delivery with linker microemulsions. Yuan JS; Yip A; Nguyen N; Chu J; Wen XY; Acosta EJ Int J Pharm; 2010 Jun; 392(1-2):274-84. PubMed ID: 20363304 [TBL] [Abstract][Full Text] [Related]
17. Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery. Md Moshikur R; Shimul IM; Uddin S; Wakabayashi R; Moniruzzaman M; Goto M ACS Appl Mater Interfaces; 2022 Dec; 14(50):55332-55341. PubMed ID: 36508194 [TBL] [Abstract][Full Text] [Related]
18. Development of novel ionic liquid-based microemulsion formulation for dermal delivery of 5-Fluorouracil. Goindi S; Arora P; Kumar N; Puri A AAPS PharmSciTech; 2014 Aug; 15(4):810-21. PubMed ID: 24668136 [TBL] [Abstract][Full Text] [Related]
19. Coating solid dispersions on microneedles via a molten dip-coating method: development and in vitro evaluation for transdermal delivery of a water-insoluble drug. Ma Y; Gill HS J Pharm Sci; 2014 Nov; 103(11):3621-3630. PubMed ID: 25213295 [TBL] [Abstract][Full Text] [Related]
20. Formulation optimization of a drug in adhesive transdermal analgesic patch. Ravula R; Herwadkar AK; Abla MJ; Little J; Banga AK Drug Dev Ind Pharm; 2016; 42(6):862-70. PubMed ID: 26288995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]