These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26945514)

  • 41. Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation.
    Tohge T; Scossa F; Fernie AR
    Plant Physiol; 2015 Nov; 169(3):1499-511. PubMed ID: 26371234
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Global Proteomic Profiling and Identification of Stress-Responsive Proteins Using Two-Dimensional Gel Electrophoresis.
    Barua P; Gayen D; Lande NV; Chakraborty S; Chakraborty N
    Methods Mol Biol; 2017; 1631():163-179. PubMed ID: 28735397
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plant Proteomics: a bridge between fundamental processes and crop production.
    Mock HP
    Biochim Biophys Acta; 2016 Aug; 1864(8):881-2. PubMed ID: 27288975
    [No Abstract]   [Full Text] [Related]  

  • 44. Quantitative proteomic analyses of crop seedlings subjected to stress conditions; a commentary.
    Nanjo Y; Nouri MZ; Komatsu S
    Phytochemistry; 2011 Jul; 72(10):1263-72. PubMed ID: 21084103
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement.
    Vanderschuren H; Lentz E; Zainuddin I; Gruissem W
    J Proteomics; 2013 Nov; 93():5-19. PubMed ID: 23748024
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids.
    Horn S; Pabón-Mora N; Theuß VS; Busch A; Zachgo S
    Plant J; 2015 Feb; 81(4):559-71. PubMed ID: 25557238
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective.
    Johnová P; Skalák J; Saiz-Fernández I; Brzobohatý B
    Biochim Biophys Acta; 2016 Aug; 1864(8):916-31. PubMed ID: 26861773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomics approaches advance our understanding of plant self-incompatibility response.
    Sankaranarayanan S; Jamshed M; Samuel MA
    J Proteome Res; 2013 Nov; 12(11):4717-26. PubMed ID: 24047343
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative proteomics of peanut gynophore development under dark and mechanical stimulation.
    Sun Y; Wang Q; Li Z; Hou L; Dai S; Liu W
    J Proteome Res; 2013 Dec; 12(12):5502-11. PubMed ID: 24159916
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteomics in commercial crops: An overview.
    Tan BC; Lim YS; Lau SE
    J Proteomics; 2017 Oct; 169():176-188. PubMed ID: 28546092
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biosystematics and plant proteomics: role of proteomics in plant phylogenetic analysis.
    Ishtiaq CM; He Q; Huang JP; Wang Y; Xiao PG; Yi YC
    Pak J Biol Sci; 2007 Oct; 10(20):3487-96. PubMed ID: 19093454
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteomic profiling reveals insights into Triticeae stigma development and function.
    Nazemof N; Couroux P; Rampitsch C; Xing T; Robert LS
    J Exp Bot; 2014 Nov; 65(20):6069-80. PubMed ID: 25170101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrating cell biology and proteomic approaches in plants.
    Takáč T; Šamajová O; Šamaj J
    J Proteomics; 2017 Oct; 169():165-175. PubMed ID: 28438675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Birth of plant proteomics in India: a new horizon.
    Narula K; Pandey A; Gayali S; Chakraborty N; Chakraborty S
    J Proteomics; 2015 Sep; 127(Pt A):34-43. PubMed ID: 25920368
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS: the conductors of dual reproduction in plants with vegetative storage organs.
    Khosa J; Bellinazzo F; Kamenetsky Goldstein R; Macknight R; Immink RGH
    J Exp Bot; 2021 Apr; 72(8):2845-2856. PubMed ID: 33606013
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant Proteomic Research 3.0: Challenges and Perspectives.
    Komatsu S; Jorrin-Novo JV
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466599
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plant Proteomic Research 4.0: Frontiers in Stress Resilience.
    Chen S; Komatsu S
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948158
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein interaction networks in plants.
    Uhrig JF
    Planta; 2006 Sep; 224(4):771-81. PubMed ID: 16575597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finding the fragrance genes of wintersweet.
    Baral A
    Physiol Plant; 2019 Jun; 166(2):475-477. PubMed ID: 31106858
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications.
    Nie L; Wu G; Culley DE; Scholten JC; Zhang W
    Crit Rev Biotechnol; 2007; 27(2):63-75. PubMed ID: 17578703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.