These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 26945582)

  • 1. A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems.
    Kan X; Lee CH; Othmer HG
    J Math Biol; 2016 Nov; 73(5):1081-1129. PubMed ID: 26945582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H; Kaznessis Y
    J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive hybrid simulations for multiscale stochastic reaction networks.
    Hepp B; Gupta A; Khammash M
    J Chem Phys; 2015 Jan; 142(3):034118. PubMed ID: 25612700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy Analysis of Hybrid Stochastic Simulation Algorithm on Linear Chain Reaction Systems.
    Chen M; Wang S; Cao Y
    Bull Math Biol; 2019 Aug; 81(8):3024-3052. PubMed ID: 29992454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks.
    Ramaswamy R; González-Segredo N; Sbalzarini IF
    J Chem Phys; 2009 Jun; 130(24):244104. PubMed ID: 19566139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks.
    Meng XF; Baetica AA; Singhal V; Murray RM
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28566513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A constrained approach to multiscale stochastic simulation of chemically reacting systems.
    Cotter SL; Zygalakis KC; Kevrekidis IG; Erban R
    J Chem Phys; 2011 Sep; 135(9):094102. PubMed ID: 21913748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction and solution of the chemical master equation using time scale separation and finite state projection.
    Peles S; Munsky B; Khammash M
    J Chem Phys; 2006 Nov; 125(20):204104. PubMed ID: 17144687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A probability generating function method for stochastic reaction networks.
    Kim P; Lee CH
    J Chem Phys; 2012 Jun; 136(23):234108. PubMed ID: 22779582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two classes of quasi-steady-state model reductions for stochastic kinetics.
    Mastny EA; Haseltine EL; Rawlings JB
    J Chem Phys; 2007 Sep; 127(9):094106. PubMed ID: 17824731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced identification and exploitation of time scales for model reduction in stochastic chemical kinetics.
    Gómez-Uribe CA; Verghese GC; Tzafriri AR
    J Chem Phys; 2008 Dec; 129(24):244112. PubMed ID: 19123500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid deterministic/stochastic simulation of complex biochemical systems.
    Lecca P; Bagagiolo F; Scarpa M
    Mol Biosyst; 2017 Nov; 13(12):2672-2686. PubMed ID: 29058744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solving the chemical master equation by a fast adaptive finite state projection based on the stochastic simulation algorithm.
    Sidje RB; Vo HD
    Math Biosci; 2015 Nov; 269():10-6. PubMed ID: 26319118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A geometric analysis of fast-slow models for stochastic gene expression.
    Popović N; Marr C; Swain PS
    J Math Biol; 2016 Jan; 72(1-2):87-122. PubMed ID: 25833185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensional reduction of the master equation for stochastic chemical networks: The reduced-multiplane method.
    Barzel B; Biham O; Kupferman R; Lipshtat A; Zait A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021117. PubMed ID: 20866785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems.
    Goutsias J
    J Chem Phys; 2005 May; 122(18):184102. PubMed ID: 15918689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrete-time stochastic modeling and simulation of biochemical networks.
    Sandmann W
    Comput Biol Chem; 2008 Aug; 32(4):292-7. PubMed ID: 18499525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.