These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 26945722)

  • 61. Gait pattern classification using compact features extracted from intrinsic mode functions.
    Ibrahim RK; Ambikairajah E; Celler BG; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3852-5. PubMed ID: 19163553
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Marker-based classification of young-elderly gait pattern differences via direct PCA feature extraction and SVMs.
    Eskofier BM; Federolf P; Kugler PF; Nigg BM
    Comput Methods Biomech Biomed Engin; 2013 Apr; 16(4):435-42. PubMed ID: 22149087
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The repeatability and reproducibility of the Sheffield Features of Gait Tool.
    Birch I; Birch M; Rutler L; Brown S; Burgos LR; Otten B; Wiedemeijer M
    Sci Justice; 2019 Sep; 59(5):544-551. PubMed ID: 31472799
    [TBL] [Abstract][Full Text] [Related]  

  • 64. View Transformation Model Incorporating Quality Measures for Cross-View Gait Recognition.
    Muramatsu D; Makihara Y; Yagi Y
    IEEE Trans Cybern; 2016 Jul; 46(7):1602-15. PubMed ID: 26259209
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Gait deviations of patients with ruptured anterior cruciate ligament: a cross-sectional gait analysis study on male patients.
    Park JH; Choi MH; Lee J; Han HS; Lee MC; Ro DH
    Knee Surg Relat Res; 2021 Dec; 33(1):45. PubMed ID: 34952655
    [No Abstract]   [Full Text] [Related]  

  • 66. Vision-based gait impairment analysis for aided diagnosis.
    Ortells J; Herrero-Ezquerro MT; Mollineda RA
    Med Biol Eng Comput; 2018 Sep; 56(9):1553-1564. PubMed ID: 29435705
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions.
    Phinyomark A; Petri G; Ibáñez-Marcelo E; Osis ST; Ferber R
    J Med Biol Eng; 2018; 38(2):244-260. PubMed ID: 29670502
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Clinical gait assessment: a personal view.
    Rose GK
    J Med Eng Technol; 1983; 7(6):273-9. PubMed ID: 6668589
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Advancing Anterior Cruciate Ligament Injury Prevention Using Real-Time Biofeedback for Amplified Sensorimotor Integration.
    Bonnette S; DiCesare CA; Diekfuss JA; Grooms DR; MacPherson RP; Riley MA; Myer GD
    J Athl Train; 2019 Sep; 54(9):985-986. PubMed ID: 31437016
    [No Abstract]   [Full Text] [Related]  

  • 70. What Are the Criteria for an Acute Form of Anterior Cruciate Ligament Tear for the Severity of the Process by Gait Analysis Data?
    Skvortsov D; Altukhova A; Kaurkin S; Akhpashev A
    J Clin Med; 2023 Jul; 12(14):. PubMed ID: 37510918
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Leveraging Multivariable Linear Regression Analysis to Identify Patients with Anterior Cruciate Ligament Deficiency Using a Composite Index of the Knee Flexion and Muscle Force.
    Li H; Huang H; Ren S; Rong Q
    Bioengineering (Basel); 2023 Feb; 10(3):. PubMed ID: 36978675
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Interpretability of Clinical Decision Support Systems Based on Artificial Intelligence from Technological and Medical Perspective: A Systematic Review.
    Xu Q; Xie W; Liao B; Hu C; Qin L; Yang Z; Xiong H; Lyu Y; Zhou Y; Luo A
    J Healthc Eng; 2023; 2023():9919269. PubMed ID: 36776958
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Recent Machine Learning Progress in Lower Limb Running Biomechanics With Wearable Technology: A Systematic Review.
    Xiang L; Wang A; Gu Y; Zhao L; Shim V; Fernandez J
    Front Neurorobot; 2022; 16():913052. PubMed ID: 35721274
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Leveraging explainable machine learning to identify gait biomechanical parameters associated with anterior cruciate ligament injury.
    Kokkotis C; Moustakidis S; Tsatalas T; Ntakolia C; Chalatsis G; Konstadakos S; Hantes ME; Giakas G; Tsaopoulos D
    Sci Rep; 2022 Apr; 12(1):6647. PubMed ID: 35459787
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Automatic Classification of Barefoot and Shod Populations Based on the Foot Metrics and Plantar Pressure Patterns.
    Xiang L; Gu Y; Mei Q; Wang A; Shim V; Fernandez J
    Front Bioeng Biotechnol; 2022; 10():843204. PubMed ID: 35402419
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Knee Joint Biomechanical Gait Data Classification for Knee Pathology Assessment: A Literature Review.
    Abid M; Mezghani N; Mitiche A
    Appl Bionics Biomech; 2019; 2019():7472039. PubMed ID: 31217817
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modeling and classification of gait patterns between anterior cruciate ligament deficient and intact knees based on phase space reconstruction, Euclidean distance and neural networks.
    Wu W; Zeng W; Ma L; Yuan C; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):165. PubMed ID: 30382920
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE.
    Chen Q; Meng Z; Liu X; Jin Q; Su R
    Genes (Basel); 2018 Jun; 9(6):. PubMed ID: 29914084
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Comparative Study of Feature Selection Methods for the Discriminative Analysis of Temporal Lobe Epilepsy.
    Lai C; Guo S; Cheng L; Wang W
    Front Neurol; 2017; 8():633. PubMed ID: 29375459
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Computer aided analysis of gait patterns in patients with acute anterior cruciate ligament injury.
    Christian J; Kröll J; Strutzenberger G; Alexander N; Ofner M; Schwameder H
    Clin Biomech (Bristol, Avon); 2016 Mar; 33():55-60. PubMed ID: 26945722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.