These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26945758)

  • 1. Biochemical Modulation by Carbon and Nitrogen Addition in Cultures of Dictyota menstrualis (Dictyotales, Phaeophyceae) to Generate Oil-based Bioproducts.
    Martins AP; Yokoya NS; Colepicolo P
    Mar Biotechnol (NY); 2016 Jun; 18(3):314-26. PubMed ID: 26945758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum.
    Kikutani S; Nakajima K; Nagasato C; Tsuji Y; Miyatake A; Matsuda Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9828-33. PubMed ID: 27531955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of season, needle age and elevated CO2 concentration on photosynthesis and Rubisco acclimation in Picea abies.
    Urban O; Hrstka M; Zitová M; Holišová P; Sprtová M; Klem K; Calfapietra C; De Angelis P; Marek MV
    Plant Physiol Biochem; 2012 Sep; 58():135-41. PubMed ID: 22819860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a mutant lacking carboxysomal carbonic anhydrase from the cyanobacterium Synechocystis PCC6803.
    So AK; John-McKay M; Espie GS
    Planta; 2002 Jan; 214(3):456-67. PubMed ID: 11859847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved responses to elevated CO
    Vicente R; Pérez P; Martínez-Carrasco R; Morcuende R
    Plant Sci; 2017 Jul; 260():119-128. PubMed ID: 28554469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocean acidification modulates expression of genes and physiological performance of a marine diatom.
    Li Y; Zhuang S; Wu Y; Ren H; Chen F; Lin X; Wang K; Beardall J; Gao K
    PLoS One; 2017; 12(2):e0170970. PubMed ID: 28192486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment.
    Makino A; Nakano H; Mae T; Shimada T; Yamamoto N
    J Exp Bot; 2000 Feb; 51 Spec No():383-9. PubMed ID: 10938846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism.
    Mangan NM; Flamholz A; Hood RD; Milo R; Savage DF
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):E5354-62. PubMed ID: 27551079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri.
    Smith-Harding TJ; Beardall J; Mitchell JG
    J Phycol; 2017 Dec; 53(6):1159-1170. PubMed ID: 28771812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rubisco proton production can drive the elevation of CO
    Long BM; Förster B; Pulsford SB; Price GD; Badger MR
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33931502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root-shoot interactions explain the reduction of leaf mineral content in Arabidopsis plants grown under elevated [CO2 ] conditions.
    Jauregui I; Aparicio-Tejo PM; Avila C; Cañas R; Sakalauskiene S; Aranjuelo I
    Physiol Plant; 2016 Sep; 158(1):65-79. PubMed ID: 26801348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen.
    Bloom AJ
    Photosynth Res; 2015 Feb; 123(2):117-28. PubMed ID: 25366830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of CO
    Huang W; Jin Q; Yin L; Li W
    Ecotoxicol Environ Saf; 2020 Oct; 202():110955. PubMed ID: 32800229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and rubisco in Arabidopsis starch mutants. Significance of starch and hexose.
    Sun J; Gibson KM; Kiirats O; Okita TW; Edwards GE
    Plant Physiol; 2002 Nov; 130(3):1573-83. PubMed ID: 12428022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsolved Problems of Carbonic Anhydrases Functioning in Photosynthetic Cells of Higher C3 Plants.
    Rudenko NN; Ivanov BN
    Biochemistry (Mosc); 2021 Oct; 86(10):1243-1255. PubMed ID: 34903154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer.
    Gordillo FJ; Aguilera J; Jiménez C
    J Exp Bot; 2006; 57(11):2661-71. PubMed ID: 16829547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth.
    Dellero Y; Lamothe-Sibold M; Jossier M; Hodges M
    Plant J; 2015 Sep; 83(6):1005-18. PubMed ID: 26216646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta).
    Gordillo FJ; Niell FX; Figueroa FL
    Planta; 2001 May; 213(1):64-70. PubMed ID: 11523657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Small Decrease in Rubisco Content by Individual Suppression of RBCS Genes Leads to Improvement of Photosynthesis and Greater Biomass Production in Rice Under Conditions of Elevated CO2.
    Kanno K; Suzuki Y; Makino A
    Plant Cell Physiol; 2017 Mar; 58(3):635-642. PubMed ID: 28158810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedforward non-Michaelis-Menten mechanism for CO(2) uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation.
    Igamberdiev AU; Roussel MR
    Biosystems; 2012 Mar; 107(3):158-66. PubMed ID: 22154946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.