These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26945864)

  • 1. An Universal packaging technique for low-drift implantable pressure sensors.
    Kim A; Powell CR; Ziaie B
    Biomed Microdevices; 2016 Apr; 18(2):32. PubMed ID: 26945864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GENERIC PACKAGING TECHNIQUE USING FLUIDIC ISOLATION FOR LOW-DRIFT IMPLANTABLE PRESSURE SENSORS.
    Kim A; Powell CR; Ziaie B
    Int Solid State Sens Actuators Microsyst Conf; 2015 Jun; 2015():476-479. PubMed ID: 27868110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parylene-on-oil packaging for long-term implantable pressure sensors.
    Shapero AM; Liu Y; Tai YC
    Biomed Microdevices; 2016 Aug; 18(4):66. PubMed ID: 27422106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of an Implantable Blood Pressure Sensor Packaged by Ultrafast Laser Microwelding.
    Kim S; Park J; So S; Ahn S; Choi J; Koo C; Joung YH
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30991708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantable ICP monitor for improved hydrocephalus management.
    Stehlin E; Malpas S; Heppner P; Hu P; Lim M; Budgett D
    Acta Neurochir Suppl; 2012; 114():101-4. PubMed ID: 22327672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting the onset of urinary bladder contractions using an implantable pressure sensor.
    Melgaard J; Rijkhoff NJ
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):700-8. PubMed ID: 21997323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a fully implantable wireless pressure monitoring system.
    Tan R; McClure T; Lin CK; Jea D; Dabiri F; Massey T; Sarrafzadeh M; Srivastava M; Montemagno CD; Schulam P; Schmidt J
    Biomed Microdevices; 2009 Feb; 11(1):259-64. PubMed ID: 18836836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A blood pressure sensor for long-term implantation.
    Bullister E; Reich S; D'Entremont P; Silverman N; Sluetz J
    Artif Organs; 2001 May; 25(5):376-9. PubMed ID: 11403667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long term assessment of blood pressure transducer drift in rhesus monkeys chronically instrumented with telemetry implants.
    Regan HK; Lynch JJ; Regan CP
    J Pharmacol Toxicol Methods; 2009; 59(1):35-8. PubMed ID: 18983927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronically implanted pressure sensors: challenges and state of the field.
    Yu L; Kim BJ; Meng E
    Sensors (Basel); 2014 Oct; 14(11):20620-44. PubMed ID: 25365461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Post-monitoring changes in zero drift of "Codman" intracranial pressure sensors].
    Oshorov AV; Savin IA; Goriachev KA; Popugaev KA; Polupan AA; Sychev AA; TabasaranskiÄ­ TF
    Anesteziol Reanimatol; 2011; (3):62-6. PubMed ID: 21851026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Camino intracranial pressure sensor: is it optimal technology? An internal audit with a review of current intracranial pressure monitoring technologies.
    Piper I; Barnes A; Smith D; Dunn L
    Neurosurgery; 2001 Nov; 49(5):1158-64; discussion 1164-5. PubMed ID: 11846910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable bladder volume sensor based on resistor ladder network composed of conductive hydrogel composite.
    Mi Kyung Kim ; Hyojung Kim ; Jung YS; Adem KMA; Bawazir SS; Stefanini C; Lee HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1732-1735. PubMed ID: 29060221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless Interrogation of Implantable SAW Sensors.
    Zou L; McLeod C; Bahmanyar MR
    IEEE Trans Biomed Eng; 2020 May; 67(5):1409-1417. PubMed ID: 31449002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term testing of an intracranial pressure monitoring device.
    Kroin JS; McCarthy RJ; Stylos L; Miesel K; Ivankovich AD; Penn RD
    J Neurosurg; 2000 Nov; 93(5):852-8. PubMed ID: 11059668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bench test assessment of the new Raumedic Neurovent-P ICP sensor: a technical report by the BrainIT group.
    Citerio G; Piper I; Cormio M; Galli D; Cazzaniga S; Enblad P; Nilsson P; Contant C; Chambers I;
    Acta Neurochir (Wien); 2004 Nov; 146(11):1221-6. PubMed ID: 15338335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress of Miniature MEMS Pressure Sensors.
    Song P; Ma Z; Ma J; Yang L; Wei J; Zhao Y; Zhang M; Yang F; Wang X
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31906297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantable electrolyte conductance-based pressure sensing catheter, II. Device construction and testing.
    Tan R; Benharash P; Schulam P; Schmidt JJ
    Biomed Microdevices; 2013 Dec; 15(6):1035-41. PubMed ID: 23868117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary evaluation of a novel intraparenchymal capacitive intracranial pressure monitor.
    Aquilina K; Thoresen M; Chakkarapani E; Pople IK; Coakham HB; Edwards RJ
    J Neurosurg; 2011 Sep; 115(3):561-9. PubMed ID: 21619410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1138-47. PubMed ID: 24846651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.