BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26945961)

  • 1. A mechanistic model for electrochemical nutrient recovery systems.
    Thompson Brewster E; Mehta CM; Radjenovic J; Batstone DJ
    Water Res; 2016 May; 94():176-186. PubMed ID: 26945961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial Fluxes of Phosphoric Acid Anions through Anion-Exchange Membranes in the Course of NaH
    Rybalkina O; Tsygurina K; Melnikova E; Mareev S; Moroz I; Nikonenko V; Pismenskaya N
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31340475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractionating various nutrient ions for resource recovery from swine wastewater using simultaneous anionic and cationic selective-electrodialysis.
    Ye ZL; Ghyselbrecht K; Monballiu A; Pinoy L; Meesschaert B
    Water Res; 2019 Sep; 160():424-434. PubMed ID: 31163318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing selective ammonium transport in membrane electrochemical systems.
    Yang K; Qin M
    Water Res; 2024 Jun; 257():121668. PubMed ID: 38692262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling recovery of ammonium from urine by electro-concentration in a 3-chamber cell.
    Thompson Brewster E; Jermakka J; Freguia S; Batstone DJ
    Water Res; 2017 Nov; 124():210-218. PubMed ID: 28759793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical acidification of Kraft black liquor by electrodialysis with bipolar membrane: Ion exchange membrane fouling identification and mechanisms.
    Haddad M; Mikhaylin S; Bazinet L; Savadogo O; Paris J
    J Colloid Interface Sci; 2017 Feb; 488():39-47. PubMed ID: 27821338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Current on the Membrane and Boundary Layer Selectivity in Electrochemical Systems Designed for Nutrient Recovery.
    Rodrigues M; Sleutels T; Kuntke P; Buisman CJN; Hamelers HVM
    ACS Sustain Chem Eng; 2022 Jul; 10(29):9411-9418. PubMed ID: 35910292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Self-driven Microbial Nutrient Recovery Cell with Simultaneous Wastewater Purification.
    Chen X; Sun D; Zhang X; Liang P; Huang X
    Sci Rep; 2015 Oct; 5():15744. PubMed ID: 26503712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient recovery from wastewater through pilot scale electrodialysis.
    Ward AJ; Arola K; Thompson Brewster E; Mehta CM; Batstone DJ
    Water Res; 2018 May; 135():57-65. PubMed ID: 29454922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensive current transfer in membrane systems: modelling, mechanisms and application in electrodialysis.
    Nikonenko VV; Pismenskaya ND; Belova EI; Sistat P; Huguet P; Pourcelly G; Larchet C
    Adv Colloid Interface Sci; 2010 Oct; 160(1-2):101-23. PubMed ID: 20833381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.
    Xie M; Shon HK; Gray SR; Elimelech M
    Water Res; 2016 Feb; 89():210-21. PubMed ID: 26674549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.
    Borea L; Naddeo V; Belgiorno V
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):321-333. PubMed ID: 27718113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).
    Pawlowski S; Galinha CF; Crespo JG; Velizarov S
    Water Res; 2016 Jan; 88():184-198. PubMed ID: 26497936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models.
    Flores-Alsina X; Kazadi Mbamba C; Solon K; Vrecko D; Tait S; Batstone DJ; Jeppsson U; Gernaey KV
    Water Res; 2015 Nov; 85():255-65. PubMed ID: 26342179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrodialysis heterogeneous ion exchange membranes modified by SiO2 nanoparticles: fabrication and electrochemical characterization.
    Hosseini SM; Ahmadi Z; Nemati M; Parvizian F; Madaeni SS
    Water Sci Technol; 2016; 73(9):2074-84. PubMed ID: 27148708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of ion-exchange membranes by means of chronopotentiometry: A comprehensive review on this highly informative and multipurpose technique.
    Barros KS; Martí-Calatayud MC; Scarazzato T; Bernardes AM; Espinosa DCR; Pérez-Herranz V
    Adv Colloid Interface Sci; 2021 Jul; 293():102439. PubMed ID: 34058435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronously recovering different nutrient ions from wastewater by using selective electrodialysis.
    Li Y; Ye ZL; Yang R; Chen S
    Water Sci Technol; 2022 Nov; 86(10):2627-2641. PubMed ID: 36450677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seawater-driven forward osmosis for enriching nitrogen and phosphorous in treated municipal wastewater: effect of membrane properties and feed solution chemistry.
    Xue W; Tobino T; Nakajima F; Yamamoto K
    Water Res; 2015 Feb; 69():120-130. PubMed ID: 25463933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multistep mineral fouling growth on a cation-exchange membrane ruled by gradual sieving effects of magnesium and carbonate ions and its delay by pulsed modes of electrodialysis.
    Cifuentes-Araya N; Pourcelly G; Bazinet L
    J Colloid Interface Sci; 2012 Apr; 372(1):217-30. PubMed ID: 22326231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. San copolymer membranes with ion exchangers for Cu(II) removal from synthetic wastewater by electrodialysis.
    Caprarescu S; Corobea MC; Purcar V; Spataru CI; Ianchis R; Vasilievici G; Vuluga Z
    J Environ Sci (China); 2015 Sep; 35():27-37. PubMed ID: 26354689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.