These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 26946019)

  • 1. Microfluidic generation of magnetic-fluorescent Janus microparticles for biomolecular detection.
    Lan J; Chen J; Li N; Ji X; Yu M; He Z
    Talanta; 2016 May; 151():126-131. PubMed ID: 26946019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system.
    Ji XH; Cheng W; Guo F; Liu W; Guo SS; He ZK; Zhao XZ
    Lab Chip; 2011 Aug; 11(15):2561-8. PubMed ID: 21687836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic synthesis of tail-shaped alginate microparticles using slow sedimentation.
    Lin YS; Yang CH; Hsu YY; Hsieh CL
    Electrophoresis; 2013 Feb; 34(3):425-31. PubMed ID: 23161405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.
    Marquis M; Davy J; Cathala B; Fang A; Renard D
    Carbohydr Polym; 2015 Feb; 116():189-99. PubMed ID: 25458289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles.
    Sun XT; Zhang Y; Zheng DH; Yue S; Yang CG; Xu ZR
    Biosens Bioelectron; 2017 Jun; 92():81-86. PubMed ID: 28189069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic alginate microspheres detected by MRI fabricated using microfluidic technique and release behavior of encapsulated dual drugs.
    Wang Q; Liu S; Yang F; Gan L; Yang X; Yang Y
    Int J Nanomedicine; 2017; 12():4335-4347. PubMed ID: 28652736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles.
    Huang KS; Lai TH; Lin YC
    Lab Chip; 2006 Jul; 6(7):954-7. PubMed ID: 16804602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Sep; 10(17):2292-5. PubMed ID: 20625583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of tadpole-shaped calcium alginate microparticles with sphericity control.
    Dang TD; Joo SW
    Colloids Surf B Biointerfaces; 2013 Feb; 102():766-71. PubMed ID: 23107954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of magnetic/luminescent alginate-templated composite microparticles with temperature-dependent photoluminescence under high-frequency magnetic field.
    Liu J; Zhang Y; Yan C; Wang C; Xu R; Gu N
    Langmuir; 2010 Dec; 26(24):19066-72. PubMed ID: 21090658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles.
    Yoon S; Kim JA; Lee SH; Kim M; Park TH
    Lab Chip; 2013 Apr; 13(8):1522-8. PubMed ID: 23426090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV).
    Varela S; Balagué I; Sancho I; Ertürk N; Ferrando M; Vernet A
    J Microencapsul; 2016; 33(2):153-61. PubMed ID: 26878165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection.
    Varma VB; Wu RG; Wang ZP; Ramanujan RV
    Lab Chip; 2017 Oct; 17(20):3514-3525. PubMed ID: 28936512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical properties of water soluble CdSe quantum dots modified by a novel biopolymer based on sodium alginate.
    Bardajee GR; Hooshyar Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():622-6. PubMed ID: 23811148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles.
    Martinez CJ; Kim JW; Ye C; Ortiz I; Rowat AC; Marquez M; Weitz D
    Macromol Biosci; 2012 Jul; 12(7):946-51. PubMed ID: 22311460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation.
    Huang KS; Lai TH; Lin YC
    Front Biosci; 2007 May; 12():3061-7. PubMed ID: 17485282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release.
    Fang A; Cathala B
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):81-6. PubMed ID: 20833004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of uniform core-shell gelatin-alginate microparticles as intestine-released oral delivery drug carrier.
    Huang KS; Yang CH; Kung CP; Grumezescu AM; Ker MD; Lin YS; Wang CY
    Electrophoresis; 2014 Feb; 35(2-3):330-6. PubMed ID: 24002863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.