BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26946089)

  • 21. Distribution-based maximum likelihood estimation methods are preferred for estimating Salmonella concentration in chicken when contamination data are highly left-censored.
    Sun T; Liu Y; Gao S; Qin X; Lin Z; Dou X; Wang X; Zhang H; Dong Q
    Food Microbiol; 2023 Aug; 113():104283. PubMed ID: 37098436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data.
    Huynh T; Quick H; Ramachandran G; Banerjee S; Stenzel M; Sandler DP; Engel LS; Kwok RK; Blair A; Stewart PA
    Ann Occup Hyg; 2016 Jan; 60(1):56-73. PubMed ID: 26209598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of uncertainties in in situ and ex situ gamma measurements on land areas with low contamination levels.
    Rostron PD; Heathcote JA; Ramsey MH
    J Radiol Prot; 2015 Jun; 35(2):391-9. PubMed ID: 25928900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncertainty assessment for management of soil contaminants with sparse data.
    Schnabel U; Tietje O; Scholz RW
    Environ Manage; 2004 Jun; 33(6):911-25. PubMed ID: 15517687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uncertainty assessment of heavy metal soil contamination mapping using spatiotemporal sequential indicator simulation with multi-temporal sampling points.
    Yang Y; Christakos G
    Environ Monit Assess; 2015 Sep; 187(9):571. PubMed ID: 26269104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators. I. Model description and uncertainty analysis.
    Traas TP; Luttik R; Jongbloed RH
    Ecotoxicol Environ Saf; 1996 Aug; 34(3):264-78. PubMed ID: 8812195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of uncertainty in the sampling and analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons from contaminated soil in Brighton, UK.
    Zhou JL; Siddiqui E; Ngo HH; Guo W
    Sci Total Environ; 2014 Nov; 497-498():163-171. PubMed ID: 25128886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Propagation of uncertainties in soil and pesticide properties to pesticide leaching.
    van den Berg F; Tiktak A; Heuvelink GB; Burgers SL; Brus DJ; de Vries F; Stolte J; Kroes JG
    J Environ Qual; 2012; 41(1):253-61. PubMed ID: 22218193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decision making under uncertainty in case of soil remediation.
    Scholz RW; Schnabel U
    J Environ Manage; 2006 Jul; 80(2):132-47. PubMed ID: 16413097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of techniques for assessing central tendency in left-censored data using PCB and p,p'DDE contaminant concentrations from Michigan's Bald Eagle Biosentinel Program.
    Leith KF; Bowerman WW; Wierda MR; Best DA; Grubb TG; Sikarske JG
    Chemosphere; 2010 Jun; 80(1):7-12. PubMed ID: 20416924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confidence interval comparison: Precision of maximum likelihood estimates in LLOQ affected data.
    Bülow T; Hilgers RD; Heussen N
    PLoS One; 2023; 18(11):e0293640. PubMed ID: 37917602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of censored exposure data by constrained maximization of the Shapiro-Wilk W statistic.
    Flynn MR
    Ann Occup Hyg; 2010 Apr; 54(3):263-71. PubMed ID: 19955326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantification of variability and uncertainty for air toxic emission inventories with censored emission factor data.
    Frey HC; Zhao Y
    Environ Sci Technol; 2004 Nov; 38(22):6094-100. PubMed ID: 15573612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uncertainty assessment of mapping mercury contaminated soils of a rapidly industrializing city in the Yangtze River Delta of China using sequential indicator co-simulation.
    Zhao Y; Xu X; Sun W; Huang B; Darilek JL; Shi X
    Environ Monit Assess; 2008 Mar; 138(1-3):343-55. PubMed ID: 17530430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applying Incremental Sampling Methodology to Soils Containing Heterogeneously Distributed Metallic Residues to Improve Risk Analysis.
    Clausen JL; Georgian T; Gardner KH; Douglas TA
    Bull Environ Contam Toxicol; 2018 Jan; 100(1):155-161. PubMed ID: 29270645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of uncertainty arising from different soil sampling devices: the use of variogram parameters.
    de Zorzi P; Barbizzi S; Belli M; Barbina M; Fajgelj A; Jacimovic R; Jeran Z; Menegon S; Pati A; Petruzzelli G; Sansone U; Van der Perk M
    Chemosphere; 2008 Jan; 70(5):745-52. PubMed ID: 17888487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonparametric quasi-likelihood for right censored data.
    Yu L
    Lifetime Data Anal; 2011 Oct; 17(4):594-607. PubMed ID: 21800175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial uncertainty assessment of the environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry data and soil pH.
    Qu M; Wang Y; Huang B; Zhao Y
    Environ Pollut; 2018 Sep; 240():184-190. PubMed ID: 29734079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-Consistent Nonparametric Maximum Likelihood Estimator of the Bivariate Survivor Function.
    Prentice RL
    Biometrika; 2014 Sep; 101(3):505-518. PubMed ID: 25632162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of background concentrations of contaminants using a mixture of normal distributions.
    Qian SS; Lyons RE
    Environ Sci Technol; 2006 Oct; 40(19):6021-5. PubMed ID: 17051794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.