BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 26946170)

  • 1. Identification and role analysis of an intermediate produced by a polygenic mutant of Monascus pigments cluster in Monascus ruber M7.
    Liu J; Zhou Y; Yi T; Zhao M; Xie N; Lei M; Liu Q; Shao Y; Chen F
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7037-49. PubMed ID: 26946170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergence of metabolites in three phylogenetically close Monascus species (M. pilosus, M. ruber, and M. purpureus) based on secondary metabolite biosynthetic gene clusters.
    Higa Y; Kim YS; Altaf-Ul-Amin M; Huang M; Ono N; Kanaya S
    BMC Genomics; 2020 Oct; 21(1):679. PubMed ID: 32998685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylase MrHos3 negatively regulates the production of citrinin and pigments in Monascus ruber.
    Liu Q; Zheng Y; Liu B; Tang F; Shao Y
    J Basic Microbiol; 2023 Oct; 63(10):1128-1138. PubMed ID: 37236161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the pigment production by changing Cell morphology and gene expression of Monascus ruber in high-sugar synergistic high-salt stress fermentation.
    Chen G; Zhao W; Zhao L; Song D; Chen B; Zhao X; Hu T
    J Appl Microbiol; 2023 Oct; 134(10):. PubMed ID: 37858303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Static Magnetic Field on
    Yang S; Zhou H; Dai W; Xiong J; Chen F
    J Fungi (Basel); 2021 Mar; 7(4):. PubMed ID: 33808107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Subcellular Localization of
    Xiong F; Wei J; Zhou Y; Shao Y; Liu J; Chen F
    J Fungi (Basel); 2024 May; 10(6):. PubMed ID: 38921362
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of histone H3K4 methyltransferase in regulating Monascus pigments production by red light-coupled magnetic field.
    Zhang J; Chen Y; Wang S; Liu Y; Li L; Gao M
    Photochem Photobiol; 2024; 100(1):75-86. PubMed ID: 37032633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into selenium biofortification and the selenite metabolic mechanism of Monascus ruber M7.
    Zhu L; Long P; Hu M; Wang L; Shao Y; Cheng S; Dong X; He Y
    Food Chem; 2024 May; 455():139740. PubMed ID: 38843715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative Metabolomic and Transcriptomic Analyses Uncover Metabolic Alterations and Pigment Diversity in
    Huang D; Wang Y; Zhang J; Xu H; Bai J; Zhang H; Jiang X; Yuan J; Lu G; Jiang L; Liao X; Liu B; Liu H
    mSystems; 2021 Oct; 6(5):e0080721. PubMed ID: 34491088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orange, red, yellow: biosynthesis of azaphilone pigments in
    Chen W; Chen R; Liu Q; He Y; He K; Ding X; Kang L; Guo X; Xie N; Zhou Y; Lu Y; Cox RJ; Molnár I; Li M; Shao Y; Chen F
    Chem Sci; 2017 Jul; 8(7):4917-4925. PubMed ID: 28959415
    [No Abstract]   [Full Text] [Related]  

  • 11. COMPASS core subunits MpSet1 and MpSwd3 regulate Monascus pigments synthesis in Monascus purpureus.
    Wu Z; Gao H; Liu Z
    J Basic Microbiol; 2024 Apr; 64(4):e2300686. PubMed ID: 38362934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient method for improving the stability of Monascus pigments using ionic gelation.
    Wei M; Zhu J; Gao H; Yao H; Zhai C; Nie Y
    J Sci Food Agric; 2023 Oct; 103(13):6190-6197. PubMed ID: 37139630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cocultivation Study of
    Yuan X; Chen F
    Front Microbiol; 2021; 12():670684. PubMed ID: 34177849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of UDP-galactopyranose mutase expression: A novel strategy for regulation of galactomannan biosynthesis and monascus pigments secretion in Monascus purpureus M9.
    Wang X; Li L; Ding C; Li Z; Ding W; Liu H; Wang N; Wang C; Guo Q
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129369. PubMed ID: 38218271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precursor-directed production of water-soluble red
    He L; Liu C; Chen S; Zhang J; Gao M; Li L
    Food Chem X; 2023 Dec; 20():100940. PubMed ID: 38144809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular steps of citrinin biosynthesis in fungi.
    He Y; Cox RJ
    Chem Sci; 2016 Mar; 7(3):2119-2127. PubMed ID: 29899939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Draft genome sequence of
    Yang L; Jing Y; Cheng Z; Huang K; Yang X; Xiang D; Hilde LO; Zhang H; Liu Y
    Microbiol Resour Announc; 2024 Jan; 13(1):e0080523. PubMed ID: 38099680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of
    Huang Y; Jia L; Chen F
    J Fungi (Basel); 2024 May; 10(5):. PubMed ID: 38786694
    [No Abstract]   [Full Text] [Related]  

  • 19. Metabolomics Analysis Coupled with Weighted Gene Co-Expression Network Analysis Unravels the Associations of Tricarboxylic Acid Cycle-Intermediates with Edible Pigments Produced by
    Zhang H; Liu H; Shu L; Xu H; Cheng Y; Mao Z; Liu B; Liao X; Huang D
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885410
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.