These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 26946185)
1. Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland. Medlyn BE; De Kauwe MG; Zaehle S; Walker AP; Duursma RA; Luus K; Mishurov M; Pak B; Smith B; Wang YP; Yang X; Crous KY; Drake JE; Gimeno TE; Macdonald CA; Norby RJ; Power SA; Tjoelker MG; Ellsworth DS Glob Chang Biol; 2016 Aug; 22(8):2834-51. PubMed ID: 26946185 [TBL] [Abstract][Full Text] [Related]
2. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. Drake JE; Macdonald CA; Tjoelker MG; Crous KY; Gimeno TE; Singh BK; Reich PB; Anderson IC; Ellsworth DS Glob Chang Biol; 2016 Jan; 22(1):380-90. PubMed ID: 26426394 [TBL] [Abstract][Full Text] [Related]
3. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Hasegawa S; Macdonald CA; Power SA Glob Chang Biol; 2016 Apr; 22(4):1628-43. PubMed ID: 26546164 [TBL] [Abstract][Full Text] [Related]
4. Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO Gherlenda AN; Moore BD; Haigh AM; Johnson SN; Riegler M BMC Ecol; 2016 Oct; 16(1):47. PubMed ID: 27760541 [TBL] [Abstract][Full Text] [Related]
5. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability. Duursma RA; Gimeno TE; Boer MM; Crous KY; Tjoelker MG; Ellsworth DS Glob Chang Biol; 2016 Apr; 22(4):1666-76. PubMed ID: 26546378 [TBL] [Abstract][Full Text] [Related]
6. Carbon-phosphorus cycle models overestimate CO Jiang M; Medlyn BE; Wårlind D; Knauer J; Fleischer K; Goll DS; Olin S; Yang X; Yu L; Zaehle S; Zhang H; Lv H; Crous KY; Carrillo Y; Macdonald C; Anderson I; Boer MM; Farrell M; Gherlenda A; Castañeda-Gómez L; Hasegawa S; Jarosch K; Milham P; Ochoa-Hueso R; Pathare V; Pihlblad J; Nevado JP; Powell J; Power SA; Reich P; Riegler M; Ellsworth DS; Smith B Sci Adv; 2024 Jul; 10(27):eadl5822. PubMed ID: 38959317 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Piao S; Sitch S; Ciais P; Friedlingstein P; Peylin P; Wang X; Ahlström A; Anav A; Canadell JG; Cong N; Huntingford C; Jung M; Levis S; Levy PE; Li J; Lin X; Lomas MR; Lu M; Luo Y; Ma Y; Myneni RB; Poulter B; Sun Z; Wang T; Viovy N; Zaehle S; Zeng N Glob Chang Biol; 2013 Jul; 19(7):2117-32. PubMed ID: 23504870 [TBL] [Abstract][Full Text] [Related]
11. Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. Norby RJ; De Kauwe MG; Domingues TF; Duursma RA; Ellsworth DS; Goll DS; Lapola DM; Luus KA; MacKenzie AR; Medlyn BE; Pavlick R; Rammig A; Smith B; Thomas R; Thonicke K; Walker AP; Yang X; Zaehle S New Phytol; 2016 Jan; 209(1):17-28. PubMed ID: 26249015 [TBL] [Abstract][Full Text] [Related]
12. Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO(2) against measurements from an 11-year FACE experiment on grazed pasture. Li FY; Newton PC; Lieffering M Glob Chang Biol; 2014 Jan; 20(1):228-39. PubMed ID: 23959970 [TBL] [Abstract][Full Text] [Related]
13. Woody-plant ecosystems under climate change and air pollution-response consistencies across zonobiomes? Matyssek R; Kozovits AR; Wieser G; King J; Rennenberg H Tree Physiol; 2017 Jun; 37(6):706-732. PubMed ID: 28338970 [TBL] [Abstract][Full Text] [Related]
14. Modeled responses of terrestrial ecosystems to elevated atmospheric CO Pan Y; Melillo JM; McGuire AD; Kicklighter DW; Pitelka LF; Hibbard K; Pierce LL; Running SW; Ojima DS; Parton WJ; Schimel DS; Oecologia; 1998 Apr; 114(3):389-404. PubMed ID: 28307783 [TBL] [Abstract][Full Text] [Related]
15. Alteration of forest succession and carbon cycling under elevated CO2. Miller AD; Dietze MC; DeLucia EH; Anderson-Teixeira KJ Glob Chang Biol; 2016 Jan; 22(1):351-63. PubMed ID: 26316364 [TBL] [Abstract][Full Text] [Related]
16. Effects of elevated carbon dioxide and elevated temperature on morphological, physiological and anatomical responses of Eucalyptus tereticornis along a soil phosphorus gradient. Duan H; Ontedhu J; Milham P; Lewis JD; Tissue DT Tree Physiol; 2019 Dec; 39(11):1821-1837. PubMed ID: 31728540 [TBL] [Abstract][Full Text] [Related]
17. Emergent climate and CO Rollinson CR; Liu Y; Raiho A; Moore DJP; McLachlan J; Bishop DA; Dye A; Matthes JH; Hessl A; Hickler T; Pederson N; Poulter B; Quaife T; Schaefer K; Steinkamp J; Dietze MC Glob Chang Biol; 2017 Jul; 23(7):2755-2767. PubMed ID: 28084043 [TBL] [Abstract][Full Text] [Related]
18. Informing climate models with rapid chamber measurements of forest carbon uptake. Metcalfe DB; Ricciuto D; Palmroth S; Campbell C; Hurry V; Mao J; Keel SG; Linder S; Shi X; Näsholm T; Ohlsson KE; Blackburn M; Thornton PE; Oren R Glob Chang Biol; 2017 May; 23(5):2130-2139. PubMed ID: 27490439 [TBL] [Abstract][Full Text] [Related]
19. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
20. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO Wenzel S; Cox PM; Eyring V; Friedlingstein P Nature; 2016 Oct; 538(7626):499-501. PubMed ID: 27680704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]