These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
811 related articles for article (PubMed ID: 26946373)
1. High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside. Bi L; Guan CJ; Yang GE; Yang F; Yan HY; Li QS Microbiol Res; 2016 Apr; 185():1-12. PubMed ID: 26946373 [TBL] [Abstract][Full Text] [Related]
2. Using high-throughput transcriptome sequencing to investigate the biotransformation mechanism of hexabromocyclododecane with Rhodopseudomonas palustris in water. Wang R; Lin CY; Chen SH; Lo KJ; Liu CT; Chou TH; Shih YH Sci Total Environ; 2019 Nov; 692():249-258. PubMed ID: 31349166 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis of the uniparous and multiparous goats ovaries. Wang LJ; Sun XW; Guo FY; Zhao YJ; Zhang JH; Zhao ZQ Reprod Domest Anim; 2016 Dec; 51(6):877-885. PubMed ID: 27644444 [TBL] [Abstract][Full Text] [Related]
4. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic analysis of koi (Cyprinus carpio) spleen tissue upon cyprinid herpesvirus 3 (CyHV3) infection using next generation sequencing. Lee X; Yi Y; Weng S; Zeng J; Zhang H; He J; Dong C Fish Shellfish Immunol; 2016 Feb; 49():213-24. PubMed ID: 26690666 [TBL] [Abstract][Full Text] [Related]
6. De novo transcriptome characterization of the ghost moth, Thitarodes pui, and elevation-based differences in the gene expression of its larvae. Wu W; Sun H; Guo J; Jiang F; Liu X; Zhang G Gene; 2015 Dec; 574(1):95-105. PubMed ID: 26235680 [TBL] [Abstract][Full Text] [Related]
7. Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari: Tetranychidae). Liu B; Jiang G; Zhang Y; Li J; Li X; Yue J; Chen F; Liu H; Li H; Zhu S; Wang J; Ran C PLoS One; 2011; 6(12):e28516. PubMed ID: 22162774 [TBL] [Abstract][Full Text] [Related]
8. De novo transcriptomic analysis of peripheral blood lymphocytes from the Chinese goose: gene discovery and immune system pathway description. Tariq M; Chen R; Yuan H; Liu Y; Wu Y; Wang J; Xia C PLoS One; 2015; 10(3):e0121015. PubMed ID: 25816068 [TBL] [Abstract][Full Text] [Related]
9. De Novo Assembly and Annotation of the Chinese Chive (Allium tuberosum Rottler ex Spr.) Transcriptome Using the Illumina Platform. Zhou SM; Chen LM; Liu SQ; Wang XF; Sun XD PLoS One; 2015; 10(7):e0133312. PubMed ID: 26204518 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes. Dong B; Wu B; Hong W; Li X; Li Z; Xue L; Huang Y PLoS One; 2017; 12(7):e0181835. PubMed ID: 28759610 [TBL] [Abstract][Full Text] [Related]
11. Comparative Transcriptomics of Buzura suppressaria (Lepidoptera: Geometridae) Assembled De Novo Yield Insights Into Response After Buzura suppressaria Nuclear Polyhedrosis Virus Infection. Luo J; Zhong Y; Zhu J; Zhou G; Huang H; Wu Y J Econ Entomol; 2017 Jun; 110(3):1259-1268. PubMed ID: 28108505 [TBL] [Abstract][Full Text] [Related]
12. Comparative Transcriptional Analysis of Loquat Fruit Identifies Major Signal Networks Involved in Fruit Development and Ripening Process. Song H; Zhao X; Hu W; Wang X; Shen T; Yang L Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827928 [TBL] [Abstract][Full Text] [Related]
13. Deep sequencing-based characterization of transcriptome of trifoliate orange (Poncirus trifoliata (L.) Raf.) in response to cold stress. Wang M; Zhang X; Liu JH BMC Genomics; 2015 Jul; 16(1):555. PubMed ID: 26219960 [TBL] [Abstract][Full Text] [Related]
14. Gene transcript profiles in the desert plant Nitraria tangutorum during fruit development and ripening. Wang J; Dang Z; Zhang H; Zheng L; Borjigin T; Wang Y Mol Genet Genomics; 2016 Feb; 291(1):383-98. PubMed ID: 26388259 [TBL] [Abstract][Full Text] [Related]
15. The developmental transcriptome of the synanthropic fly Chrysomya megacephala and insights into olfactory proteins. Wang X; Xiong M; Lei C; Zhu F BMC Genomics; 2015 Jan; 16(1):20. PubMed ID: 25612629 [TBL] [Abstract][Full Text] [Related]
16. De novo transcriptome sequencing and analysis of Coccinella septempunctata L. in non-diapause, diapause and diapause-terminated states to identify diapause-associated genes. Qi X; Zhang L; Han Y; Ren X; Huang J; Chen H BMC Genomics; 2015 Dec; 16():1086. PubMed ID: 26689283 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome profiling and digital gene expression analysis of the skin of Dybowski's frog (Rana dybowskii) exposed to Aeromonas hydrophila. Xu YG; Chai LH; Shi W; Wang DD; Zhang JY; Xiao XH Appl Microbiol Biotechnol; 2017 Jul; 101(14):5799-5808. PubMed ID: 28647779 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome de novo assembly sequencing and analysis of the toxic dinoflagellate Alexandrium catenella using the Illumina platform. Zhang S; Sui Z; Chang L; Kang K; Ma J; Kong F; Zhou W; Wang J; Guo L; Geng H; Zhong J; Ma Q Gene; 2014 Mar; 537(2):285-93. PubMed ID: 24440238 [TBL] [Abstract][Full Text] [Related]
19. De novo transcriptomic analysis during Lentinula edodes fruiting body growth. Wang Y; Zeng X; Liu W Gene; 2018 Jan; 641():326-334. PubMed ID: 29066302 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome Sequencing and Analysis for Culm Elongation of the World's Largest Bamboo (Dendrocalamus sinicus). Cui K; Wang H; Liao S; Tang Q; Li L; Cui Y; He Y PLoS One; 2016; 11(6):e0157362. PubMed ID: 27304219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]