These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26946936)

  • 1. Estimation of marginal costs at existing waste treatment facilities.
    Martinez-Sanchez V; Hulgaard T; Hindsgaul C; Riber C; Kamuk B; Astrup TF
    Waste Manag; 2016 Apr; 50():364-75. PubMed ID: 26946936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attitudes toward waste to energy facilities and impacts on diversion in Ontario, Canada.
    Baxter J; Ho Y; Rollins Y; Maclaren V
    Waste Manag; 2016 Apr; 50():75-85. PubMed ID: 26951720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.
    Lausselet C; Cherubini F; Del Alamo Serrano G; Becidan M; Strømman AH
    Waste Manag; 2016 Dec; 58():191-201. PubMed ID: 27679967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle costing of waste management systems: overview, calculation principles and case studies.
    Martinez-Sanchez V; Kromann MA; Astrup TF
    Waste Manag; 2015 Feb; 36():343-55. PubMed ID: 25524749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic exploration of efficient strategies to manage solid waste in U.S. municipalities: perspectives from the solid waste optimization life-cycle framework (SWOLF).
    Levis JW; Barlaz MA; Decarolis JF; Ranjithan SR
    Environ Sci Technol; 2014 Apr; 48(7):3625-31. PubMed ID: 24601652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.
    Tanigaki N; Ishida Y; Osada M
    Waste Manag; 2015 Mar; 37():137-46. PubMed ID: 25182227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.
    Cimpan C; Wenzel H
    Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition of different methods for recovering energy from waste.
    Friege H; Fendel A
    Waste Manag Res; 2011 Oct; 29(10 Suppl):30-8. PubMed ID: 21824986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the costs of municipal solid waste treatment technologies in developing Asian countries.
    Aleluia J; Ferrão P
    Waste Manag; 2017 Nov; 69():592-608. PubMed ID: 28888807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland.
    Hupponen M; Grönman K; Horttanainen M
    Waste Manag; 2015 Aug; 42():196-207. PubMed ID: 25936556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Search for a new economic optimum in the management of household waste in Tiaret city (western Algeria).
    Asnoune M; Abdelmalek F; Djelloul A; Mesghouni K; Addou A
    Waste Manag Res; 2016 Nov; 34(11):1136-1147. PubMed ID: 27491370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia.
    Hadidi LA; Omer MM
    Waste Manag; 2017 Jan; 59():90-101. PubMed ID: 27773548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.
    Toshiki K; Giang PQ; Serrona KR; Sekikawa T; Yu JS; Choijil B; Kunikane S
    J Environ Sci (China); 2015 Feb; 28():178-86. PubMed ID: 25662253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of municipal solid waste management performance by material flow analysis: Theoretical approach and case study.
    Zaccariello L; Cremiato R; Mastellone ML
    Waste Manag Res; 2015 Oct; 33(10):871-85. PubMed ID: 26253498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a decision model for the techno-economic assessment of municipal solid waste utilization pathways.
    Khan MM; Jain S; Vaezi M; Kumar A
    Waste Manag; 2016 Feb; 48():548-564. PubMed ID: 26496882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative strategies for energy recovery from municipal solid waste Part B: Emission and cost estimates.
    Consonni S; Giugliano M; Grosso M
    Waste Manag; 2005; 25(2):137-48. PubMed ID: 15737711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK.
    Yap HY; Nixon JD
    Waste Manag; 2015 Dec; 46():265-77. PubMed ID: 26275797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on technological options of waste to energy for effective management of municipal solid waste.
    Kumar A; Samadder SR
    Waste Manag; 2017 Nov; 69():407-422. PubMed ID: 28886975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges when performing economic optimization of waste treatment: a review.
    Juul N; Münster M; Ravn H; Söderman ML
    Waste Manag; 2013 Sep; 33(9):1918-25. PubMed ID: 23747136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives.
    Perkoulidis G; Papageorgiou A; Karagiannidis A; Kalogirou S
    Waste Manag; 2010 Jul; 30(7):1395-406. PubMed ID: 20061131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.