These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26947132)

  • 1. Life of superoxide in aprotic Li-O₂ battery electrolytes: simulated solvent and counter-ion effects.
    Scheers J; Lidberg D; Sodeyama K; Futera Z; Tateyama Y
    Phys Chem Chem Phys; 2016 Apr; 18(15):9961-8. PubMed ID: 26947132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Solvents on the Behavior of Lithium and Superoxide Ions in Lithium-Oxygen Battery Electrolytes.
    Smirnov VS; Kislenko SA
    Chemphyschem; 2018 Jan; 19(1):75-81. PubMed ID: 29121449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of water on the behaviour of lithium and superoxide ions in aprotic solvents.
    Sivakov V; Pavlov S; Smirnov V; Kislenko S
    Phys Chem Chem Phys; 2021 Oct; 23(39):22375-22383. PubMed ID: 34608477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Evidence of Reversible Changes in Electrolyte and its Interplay with LiO
    Sousa BP; Lourenço TC; Anchieta CG; Nepel TCM; Filho RM; Da Silva JLF; Doubek G
    Small; 2024 Aug; 20(31):e2306895. PubMed ID: 38607269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical evidence of water serving as a promoter for lithium superoxide disproportionation in Li-O
    Shan N; Redfern PC; Ngo AT; Zapol P; Markovic N; Curtiss LA
    Phys Chem Chem Phys; 2021 May; 23(17):10440-10447. PubMed ID: 33890602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dominant Decomposition Pathways for Ethereal Solvents in Li-O2 Batteries.
    García JM; Horn HW; Rice JE
    J Phys Chem Lett; 2015 May; 6(10):1795-9. PubMed ID: 26263250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.
    Johnson L; Li C; Liu Z; Chen Y; Freunberger SA; Ashok PC; Praveen BB; Dholakia K; Tarascon JM; Bruce PG
    Nat Chem; 2014 Dec; 6(12):1091-9. PubMed ID: 25411888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations.
    Tasaki K
    J Phys Chem B; 2005 Feb; 109(7):2920-33. PubMed ID: 16851305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries.
    Kwabi DG; Batcho TP; Amanchukwu CV; Ortiz-Vitoriano N; Hammond P; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2014 Aug; 5(16):2850-6. PubMed ID: 26278088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of Lithium Ions and Superoxide Anions in EMI-TFSI and Dimethyl Sulfoxide.
    Jung SH; Federici Canova F; Akagi K
    J Phys Chem A; 2016 Jan; 120(3):364-71. PubMed ID: 26689893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.
    McCloskey BD; Bethune DS; Shelby RM; Girishkumar G; Luntz AC
    J Phys Chem Lett; 2011 May; 2(10):1161-6. PubMed ID: 26295320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability.
    Schroeder MA; Kumar N; Pearse AJ; Liu C; Lee SB; Rubloff GW; Leung K; Noked M
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11402-11. PubMed ID: 25945948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.
    Marinaro M; Balasubramanian P; Gucciardi E; Theil S; Jörissen L; Wohlfahrt-Mehrens M
    ChemSusChem; 2015 Sep; 8(18):3139-45. PubMed ID: 26249807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)).
    Bryantsev VS; Giordani V; Walker W; Blanco M; Zecevic S; Sasaki K; Uddin J; Addison D; Chase GV
    J Phys Chem A; 2011 Nov; 115(44):12399-409. PubMed ID: 21962008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical vs Electrochemical Formation of Li
    Yin W; Grimaud A; Lepoivre F; Yang C; Tarascon JM
    J Phys Chem Lett; 2017 Jan; 8(1):214-222. PubMed ID: 27960058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifunctional Effects of Cation Additive on Na-O
    Zhao S; Wang C; Du D; Li L; Chou S; Li F; Chen J
    Angew Chem Int Ed Engl; 2021 Feb; 60(6):3205-3211. PubMed ID: 33073428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clarification of Solvent Effects on Discharge Products in Li-O
    Lee YJ; Kwak WJ; Sun YK; Lee YJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):526-533. PubMed ID: 29260857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and Computational Analysis of the Solvent-Dependent O2/Li(+)-O2(-) Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium-Oxygen Batteries.
    Kwabi DG; Bryantsev VS; Batcho TP; Itkis DM; Thompson CV; Shao-Horn Y
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3129-34. PubMed ID: 26822277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic origin of low polarization in aprotic Na-O
    Ma S; McKee WC; Wang J; Guo L; Jansen M; Xu Y; Peng Z
    Phys Chem Chem Phys; 2017 May; 19(19):12375-12383. PubMed ID: 28462412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.
    Lim HK; Lim HD; Park KY; Seo DH; Gwon H; Hong J; Goddard WA; Kim H; Kang K
    J Am Chem Soc; 2013 Jul; 135(26):9733-42. PubMed ID: 23758262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.