These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26947149)

  • 1. MtVRN2 is a Polycomb VRN2-like gene which represses the transition to flowering in the model legume Medicago truncatula.
    Jaudal M; Zhang L; Che C; Hurley DG; Thomson G; Wen J; Mysore KS; Putterill J
    Plant J; 2016 Apr; 86(2):145-60. PubMed ID: 26947149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retroelement insertions at the Medicago FTa1 locus in spring mutants eliminate vernalisation but not long-day requirements for early flowering.
    Jaudal M; Yeoh CC; Zhang L; Stockum C; Mysore KS; Ratet P; Putterill J
    Plant J; 2013 Nov; 76(4):580-91. PubMed ID: 23964816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medicago PHYA promotes flowering, primary stem elongation and expression of flowering time genes in long days.
    Jaudal M; Wen J; Mysore KS; Putterill J
    BMC Plant Biol; 2020 Jul; 20(1):329. PubMed ID: 32652925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time.
    Laurie RE; Diwadkar P; Jaudal M; Zhang L; Hecht V; Wen J; Tadege M; Mysore KS; Putterill J; Weller JL; Macknight RC
    Plant Physiol; 2011 Aug; 156(4):2207-24. PubMed ID: 21685176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago.
    Yeoh CC; Balcerowicz M; Zhang L; Jaudal M; Brocard L; Ratet P; Putterill J
    PLoS One; 2013; 8(1):e53467. PubMed ID: 23308229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FT genes and regulation of flowering in the legume Medicago truncatula.
    Putterill J; Zhang L; Yeoh CC; Balcerowicz M; Jaudal M; Gasic EV
    Funct Plant Biol; 2013 Dec; 40(12):1199-1207. PubMed ID: 32481188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Candidate Photoperiod Gene
    Thomson G; Zhang L; Wen J; Mysore KS; Putterill J
    Front Plant Sci; 2021; 12():634091. PubMed ID: 33841463
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Fudge JB; Lee RH; Laurie RE; Mysore KS; Wen J; Weller JL; Macknight RC
    Front Plant Sci; 2018; 9():496. PubMed ID: 29755488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The NUCLEAR FACTOR-CONSTANS complex antagonizes Polycomb repression to de-repress FLOWERING LOCUS T expression in response to inductive long days in Arabidopsis.
    Luo X; Gao Z; Wang Y; Chen Z; Zhang W; Huang J; Yu H; He Y
    Plant J; 2018 Jul; 95(1):17-29. PubMed ID: 29667247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling photoperiodic control of flowering by timely chromatin silencing of the florigen gene.
    He Y
    Nucleus; 2015; 6(3):179-82. PubMed ID: 25950625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MtING2 encodes an ING domain PHD finger protein which affects Medicago growth, flowering, global patterns of H3K4me3, and gene expression.
    Jaudal M; Mayo-Smith M; Poulet A; Whibley A; Peng Y; Zhang L; Thomson G; Trimborn L; Jacob Y; van Wolfswinkel JC; Goldstone DC; Wen J; Mysore KS; Putterill J
    Plant J; 2022 Nov; 112(4):1029-1050. PubMed ID: 36178149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoperiodic control of the floral transition through a distinct polycomb repressive complex.
    Wang Y; Gu X; Yuan W; Schmitz RJ; He Y
    Dev Cell; 2014 Mar; 28(6):727-36. PubMed ID: 24613395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transcriptomic response to a short day to long day shift in leaves of the reference legume
    Thomson G; Taylor J; Putterill J
    PeerJ; 2019; 7():e6626. PubMed ID: 30923654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.
    Greenup A; Peacock WJ; Dennis ES; Trevaskis B
    Ann Bot; 2009 Jun; 103(8):1165-72. PubMed ID: 19304997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago.
    Jaudal M; Monash J; Zhang L; Wen J; Mysore KS; Macknight R; Putterill J
    J Exp Bot; 2014 Feb; 65(2):429-42. PubMed ID: 24249713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a method for customized induction of flowering.
    Yeoh CC; Balcerowicz M; Laurie R; Macknight R; Putterill J
    BMC Biotechnol; 2011 Apr; 11():36. PubMed ID: 21481273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene-edited
    Poulet A; Zhao M; Peng Y; Tham F; Jaudal M; Zhang L; van Wolfswinkel JC; Putterill J
    Front Plant Sci; 2024; 15():1357924. PubMed ID: 38469328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The B3-Domain Transcription Factor VAL1 Regulates the Floral Transition by Repressing
    Jing Y; Guo Q; Lin R
    Plant Physiol; 2019 Sep; 181(1):236-248. PubMed ID: 31289216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components.
    Jiang D; Wang Y; Wang Y; He Y
    PLoS One; 2008; 3(10):e3404. PubMed ID: 18852898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: effects of vernalization and post-vernalization conditions on flowering and gene expression.
    Nakano Y; Kawashima H; Kinoshita T; Yoshikawa H; Hisamatsu T
    Physiol Plant; 2011 Apr; 141(4):383-93. PubMed ID: 21241311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.