BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26947160)

  • 41. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis.
    Liu J; Lin S; Qi D; Deng C; Yang P; Zhang X
    J Chromatogr A; 2007 Dec; 1176(1-2):169-77. PubMed ID: 18021785
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polydopamine-assisted immobilization of trypsin onto monolithic structures for protein digestion.
    Rivera JG; Messersmith PB
    J Sep Sci; 2012 Jun; 35(12):1514-20. PubMed ID: 22740262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trypsin immobilization on three monolithic disks for on-line protein digestion.
    Nicoli R; Gaud N; Stella C; Rudaz S; Veuthey JL
    J Pharm Biomed Anal; 2008 Sep; 48(2):398-407. PubMed ID: 18242915
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Capillary electrophoresis-based immobilized enzyme reactor using particle-packing technique.
    Liu L; Zhang B; Zhang Q; Shi Y; Guo L; Yang L
    J Chromatogr A; 2014 Jul; 1352():80-6. PubMed ID: 24913370
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immobilized monolithic enzymatic reactor and its application for analysis of in-vitro fertilization media samples.
    Chen WQ; Obermayr P; Černigoj U; Vidič J; Panić-Janković T; Mitulović G
    Electrophoresis; 2017 Nov; 38(22-23):2957-2964. PubMed ID: 28613010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of an open-tubular trypsin reactor for on-line digestion of proteins.
    Stigter EC; de Jong GJ; van Bennekom WP
    Anal Bioanal Chem; 2007 Nov; 389(6):1967-77. PubMed ID: 17899035
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrated platform of capillary isoelectric focusing, trypsin immobilized enzyme microreactor and nanoreversed-phase liquid chromatography with mass spectrometry for online protein profiling.
    Wang T; Ma J; Wu S; Yuan H; Zhang L; Liang Z; Zhang Y
    Electrophoresis; 2011 Oct; 32(20):2848-56. PubMed ID: 21922499
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Poly (N-acryloxysuccinimide-co-ethylene glycol dimethacrylate) precursor monolith and its post polymerization modification with alkyl ligands, trypsin and lectins for reversed-phase chromatography, miniaturized enzyme reactors and lectin affinity chromatography, respectively.
    Jonnada M; El Rassi Z
    Electrophoresis; 2017 Nov; 38(22-23):2870-2879. PubMed ID: 28776699
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalytic Activity of Immobilized Chymotrypsin on Hybrid Silica-Magnetic Biocompatible Particles and Its Application in Peptide Synthesis.
    Bayramoglu G; Salih B; Arica MY
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1224-1241. PubMed ID: 31735978
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis.
    Liu T; Wang S; Chen G
    Talanta; 2009 Mar; 77(5):1767-73. PubMed ID: 19159796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation and evaluation of hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary for in-tube solid-phase microextraction coupled to high-performance liquid chromatography.
    Wen Y; Feng YQ
    J Chromatogr A; 2007 Aug; 1160(1-2):90-8. PubMed ID: 17559862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An aptamer-based trypsin reactor for on-line protein digestion with electrospray ionization tandem mass spectrometry.
    Xiao P; Lv X; Wang S; Iqbal J; Qing H; Li Q; Deng Y
    Anal Biochem; 2013 Oct; 441(2):123-32. PubMed ID: 23831476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion.
    Jiang B; Yang K; Zhao Q; Wu Q; Liang Z; Zhang L; Peng X; Zhang Y
    J Chromatogr A; 2012 Sep; 1254():8-13. PubMed ID: 22871380
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monolithic column with double mixed-modes of hydrophilic interaction/cation-exchange and reverse-phase/cation-exchange stationary phase for pressurized capillary electrochromatography.
    Wang J; Lü H; Lin X; Xie Z
    Electrophoresis; 2008 Feb; 29(4):928-35. PubMed ID: 18213600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immobilization of trypsin onto porous methacrylate-based monolith for flow-through protein digestion and its potential application to chiral separation using liquid chromatography.
    Amalia S; Angga SC; Iftitah ED; Septiana D; Anggraeny BOD; Warsito ; Hasanah AN; Sabarudin A
    Heliyon; 2021 Aug; 7(8):e07707. PubMed ID: 34401587
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance comparison of three trypsin columns used in liquid chromatography.
    Šlechtová T; Gilar M; Kalíková K; Moore SM; Jorgenson JW; Tesařová E
    J Chromatogr A; 2017 Mar; 1490():126-132. PubMed ID: 28215403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel regenerative large-volume immobilized enzyme reactor: preparation, characterization and application.
    Ruan G; Wei M; Chen Z; Su R; Du F; Zheng Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Sep; 967():13-20. PubMed ID: 25063923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research.
    Zhang K; Wu S; Tang X; Kaiser NK; Bruce JE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):223-30. PubMed ID: 17150420
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multidimensional system enabling deglycosylation of proteins using a capillary reactor with peptide-N-glycosidase F immobilized on a porous polymer monolith and hydrophilic interaction liquid chromatography-mass spectrometry of glycans.
    Krenkova J; Lacher NA; Svec F
    J Chromatogr A; 2009 Apr; 1216(15):3252-9. PubMed ID: 19268959
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis.
    Naldi M; Černigoj U; Štrancar A; Bartolini M
    Talanta; 2017 May; 167():143-157. PubMed ID: 28340705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.