These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 26947443)
1. Sulfur Fertilization Changes the Community Structure of Rice Root-, and Soil- Associated Bacteria. Masuda S; Bao Z; Okubo T; Sasaki K; Ikeda S; Shinoda R; Anda M; Kondo R; Mori Y; Minamisawa K Microbes Environ; 2016; 31(1):70-5. PubMed ID: 26947443 [TBL] [Abstract][Full Text] [Related]
2. Gypsum amendment to rice paddy soil stimulated bacteria involved in sulfur cycling but largely preserved the phylogenetic composition of the total bacterial community. Wörner S; Zecchin S; Dan J; Todorova NH; Loy A; Conrad R; Pester M Environ Microbiol Rep; 2016 Jun; 8(3):413-23. PubMed ID: 27085098 [TBL] [Abstract][Full Text] [Related]
3. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Hernández M; Dumont MG; Yuan Q; Conrad R Appl Environ Microbiol; 2015 Mar; 81(6):2244-53. PubMed ID: 25616793 [TBL] [Abstract][Full Text] [Related]
4. Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria. Stubner S; Wind T; Conrad R Syst Appl Microbiol; 1998 Dec; 21(4):569-78. PubMed ID: 9924825 [TBL] [Abstract][Full Text] [Related]
5. Influence of water management on the active root-associated microbiota involved in arsenic, iron, and sulfur cycles in rice paddies. Zecchin S; Corsini A; Martin M; Cavalca L Appl Microbiol Biotechnol; 2017 Sep; 101(17):6725-6738. PubMed ID: 28660288 [TBL] [Abstract][Full Text] [Related]
6. Exposure to different arsenic species drives the establishment of iron- and sulfur-oxidizing bacteria on rice root iron plaques. Zecchin S; Colombo M; Cavalca L World J Microbiol Biotechnol; 2019 Jul; 35(8):117. PubMed ID: 31332532 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices. Ahn JH; Lee SA; Kim JM; Kim MS; Song J; Weon HY J Microbiol; 2016 Nov; 54(11):724-731. PubMed ID: 27796926 [TBL] [Abstract][Full Text] [Related]
8. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Sun L; Qiu F; Zhang X; Dai X; Dong X; Song W Microb Ecol; 2008 Apr; 55(3):415-24. PubMed ID: 17690836 [TBL] [Abstract][Full Text] [Related]
9. Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium". Zecchin S; Mueller RC; Seifert J; Stingl U; Anantharaman K; von Bergen M; Cavalca L; Pester M Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247059 [No Abstract] [Full Text] [Related]
10. Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Shi JY; Lin HR; Yuan XF; Chen XC; Shen CF; Chen YX Molecules; 2011 Feb; 16(2):1409-17. PubMed ID: 21350394 [TBL] [Abstract][Full Text] [Related]
11. Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Jin H; Yang XY; Yan ZQ; Liu Q; Li XZ; Chen JX; Zhang DH; Zeng LM; Qin B Syst Appl Microbiol; 2014 Jul; 37(5):376-85. PubMed ID: 24958606 [TBL] [Abstract][Full Text] [Related]
12. [Effects of Fertilization on Soil Microbial Abundance and Community Structure at DNA and cDNA Levels in Paddy Soils]. Wang C; Wu N; Hou HJ; Tang YF; Shen JL; Qin HL Huan Jing Ke Xue; 2016 Nov; 37(11):4372-4379. PubMed ID: 29964694 [TBL] [Abstract][Full Text] [Related]
13. Utilization of carbon sources in the rice rhizosphere and nonrhizosphere soils with different long-term fertilization management. Tang H; Xiao X; Xu Y; Li C; Cheng K; Pan X; Li W J Basic Microbiol; 2019 Jun; 59(6):621-631. PubMed ID: 30980731 [TBL] [Abstract][Full Text] [Related]
14. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Su JQ; Ding LJ; Xue K; Yao HY; Quensen J; Bai SJ; Wei WX; Wu JS; Zhou J; Tiedje JM; Zhu YG Mol Ecol; 2015 Jan; 24(1):136-50. PubMed ID: 25410123 [TBL] [Abstract][Full Text] [Related]
15. Silica fertilization and nano-MnO₂ amendment on bacterial community composition in high arsenic paddy soils. Shao J; He Y; Zhang H; Chen A; Lei M; Chen J; Peng L; Gu JD Appl Microbiol Biotechnol; 2016 Mar; 100(5):2429-37. PubMed ID: 26563550 [TBL] [Abstract][Full Text] [Related]
16. The genotype of the calcium/calmodulin-dependent protein kinase gene (CCaMK) determines bacterial community diversity in rice roots under paddy and upland field conditions. Ikeda S; Okubo T; Takeda N; Banba M; Sasaki K; Imaizumi-Anraku H; Fujihara S; Ohwaki Y; Ohshima K; Fukuta Y; Eda S; Mitsui H; Hattori M; Sato T; Shinano T; Minamisawa K Appl Environ Microbiol; 2011 Jul; 77(13):4399-405. PubMed ID: 21551283 [TBL] [Abstract][Full Text] [Related]
18. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Eller G; Frenzel P Appl Environ Microbiol; 2001 Jun; 67(6):2395-403. PubMed ID: 11375143 [TBL] [Abstract][Full Text] [Related]
19. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Navarro-Noya YE; Jan-Roblero J; González-Chávez Mdel C; Hernández-Gama R; Hernández-Rodríguez C Antonie Van Leeuwenhoek; 2010 May; 97(4):335-49. PubMed ID: 20084459 [TBL] [Abstract][Full Text] [Related]
20. Diversity of cultivable methane-oxidizing bacteria in microsites of a rice paddy field: investigation by cultivation method and fluorescence in situ hybridization (FISH). Dianou D; Ueno C; Ogiso T; Kimura M; Asakawa S Microbes Environ; 2012; 27(3):278-87. PubMed ID: 22446309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]