BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26948069)

  • 1. Rotameric preferences of a protein spin label at edge-strand β-sheet sites.
    Cunningham TF; Pornsuwan S; Horne WS; Saxena S
    Protein Sci; 2016 May; 25(5):1049-60. PubMed ID: 26948069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution structure of a protein spin-label in a solvent-exposed β-sheet and comparison with DEER spectroscopy.
    Cunningham TF; McGoff MS; Sengupta I; Jaroniec CP; Horne WS; Saxena S
    Biochemistry; 2012 Aug; 51(32):6350-9. PubMed ID: 22809334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion of spin label side chains in cellular retinol-binding protein: correlation with structure and nearest-neighbor interactions in an antiparallel beta-sheet.
    Lietzow MA; Hubbell WL
    Biochemistry; 2004 Mar; 43(11):3137-51. PubMed ID: 15023065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational analysis of a nitroxide side chain in an α-helix with density functional theory.
    Warshaviak DT; Serbulea L; Houk KN; Hubbell WL
    J Phys Chem B; 2011 Jan; 115(2):397-405. PubMed ID: 21162593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural origins of nitroxide side chain dynamics on membrane protein α-helical sites.
    Kroncke BM; Horanyi PS; Columbus L
    Biochemistry; 2010 Nov; 49(47):10045-60. PubMed ID: 20964375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins.
    Toledo Warshaviak D; Khramtsov VV; Cascio D; Altenbach C; Hubbell WL
    J Magn Reson; 2013 Jul; 232():53-61. PubMed ID: 23694751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural origin of weakly ordered nitroxide motion in spin-labeled proteins.
    Fleissner MR; Cascio D; Hubbell WL
    Protein Sci; 2009 May; 18(5):893-908. PubMed ID: 19384990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants of nitroxide motion in spin-labeled proteins: solvent-exposed sites in helix B of T4 lysozyme.
    Guo Z; Cascio D; Hideg K; Hubbell WL
    Protein Sci; 2008 Feb; 17(2):228-39. PubMed ID: 18096642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The double-histidine Cu²⁺-binding motif: a highly rigid, site-specific spin probe for electron spin resonance distance measurements.
    Cunningham TF; Putterman MR; Desai A; Horne WS; Saxena S
    Angew Chem Int Ed Engl; 2015 May; 54(21):6330-4. PubMed ID: 25821033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure.
    Langen R; Oh KJ; Cascio D; Hubbell WL
    Biochemistry; 2000 Jul; 39(29):8396-405. PubMed ID: 10913245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Precise Interpretation of DEER-Based Distance Distributions: Insights from Structural Characterization of V1 Spin-Labeled Side Chains.
    Balo AR; Feyrer H; Ernst OP
    Biochemistry; 2016 Sep; 55(37):5256-63. PubMed ID: 27532325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of nitroxide spin label conformations via PELDOR and X-ray crystallography.
    Abdullin D; Hagelueken G; Schiemann O
    Phys Chem Chem Phys; 2016 Apr; 18(15):10428-37. PubMed ID: 27029516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of a conformationally constrained nitroxide side chain and applications in EPR spectroscopy.
    Fleissner MR; Bridges MD; Brooks EK; Cascio D; Kálai T; Hideg K; Hubbell WL
    Proc Natl Acad Sci U S A; 2011 Sep; 108(39):16241-6. PubMed ID: 21911399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating the distance distribution between spin-labels attached to proteins.
    Islam SM; Roux B
    J Phys Chem B; 2015 Mar; 119(10):3901-11. PubMed ID: 25645890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanometer-scale distance measurements in proteins using Gd3+ spin labeling.
    Potapov A; Yagi H; Huber T; Jergic S; Dixon NE; Otting G; Goldfarb D
    J Am Chem Soc; 2010 Jul; 132(26):9040-8. PubMed ID: 20536233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.
    Zhuang X; Klauda JB
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1541-52. PubMed ID: 27107553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation vs. reality: a comparison of in silico distance predictions with DEER and FRET measurements.
    Klose D; Klare JP; Grohmann D; Kay CW; Werner F; Steinhoff HJ
    PLoS One; 2012; 7(6):e39492. PubMed ID: 22761805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure.
    Steinhoff HJ; Radzwill N; Thevis W; Lenz V; Brandenburg D; Antson A; Dodson G; Wollmer A
    Biophys J; 1997 Dec; 73(6):3287-98. PubMed ID: 9414239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and Environmental Characteristics of Spin Labels in a KvAP Voltage Sensor by Molecular Dynamics Simulations.
    Le Nguyen Ngoc L; Pandey RB; Sompornpisut P
    J Phys Chem B; 2021 Jan; 125(3):748-756. PubMed ID: 33459015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer Modeling of Spin Labels: NASNOX, PRONOX, and ALLNOX.
    Beasley KN; Sutch BT; Hatmal MM; Langen R; Qin PZ; Haworth IS
    Methods Enzymol; 2015; 563():569-93. PubMed ID: 26478499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.