BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

592 related articles for article (PubMed ID: 26948129)

  • 1. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex.
    Sipe GO; Lowery RL; Tremblay MÈ; Kelly EA; Lamantia CE; Majewska AK
    Nat Commun; 2016 Mar; 7():10905. PubMed ID: 26948129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of P2Y12 Has Behavioral Effects in the Adult Mouse.
    Lowery RL; Mendes MS; Sanders BT; Murphy AJ; Whitelaw BS; Lamantia CE; Majewska AK
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33668516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoinositide-3-Kinase γ Is Not a Predominant Regulator of ATP-Dependent Directed Microglial Process Motility or Experience-Dependent Ocular Dominance Plasticity.
    Whitelaw BS; Matei EK; Majewska AK
    eNeuro; 2020; 7(6):. PubMed ID: 33067365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex.
    Wong EL; Lutz NM; Hogan VA; Lamantia CE; McMurray HR; Myers JR; Ashton JM; Majewska AK
    Brain Behav Immun; 2018 Jan; 67():257-278. PubMed ID: 28918081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1.
    Schecter RW; Maher EE; Welsh CA; Stevens B; Erisir A; Bear MF
    J Neurosci; 2017 Nov; 37(44):10541-10553. PubMed ID: 28951447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of microglial P2Y12 receptor is required for outward potassium currents in response to neuronal injury.
    Swiatkowski P; Murugan M; Eyo UB; Wang Y; Rangaraju S; Oh SB; Wu LJ
    Neuroscience; 2016 Mar; 318():22-33. PubMed ID: 26791526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system.
    Lowery RL; Tremblay ME; Hopkins BE; Majewska AK
    Glia; 2017 Nov; 65(11):1744-1761. PubMed ID: 28836393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocular dominance plasticity disrupts binocular inhibition-excitation matching in visual cortex.
    Saiepour MH; Rajendran R; Omrani A; Ma WP; Tao HW; Heimel JA; Levelt CN
    Curr Biol; 2015 Mar; 25(6):713-721. PubMed ID: 25754642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microglial P2Y12 Receptor Regulates Seizure-Induced Neurogenesis and Immature Neuronal Projections.
    Mo M; Eyo UB; Xie M; Peng J; Bosco DB; Umpierre AD; Zhu X; Tian DS; Xu P; Wu LJ
    J Neurosci; 2019 Nov; 39(47):9453-9464. PubMed ID: 31597724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse.
    Gordon JA; Stryker MP
    J Neurosci; 1996 May; 16(10):3274-86. PubMed ID: 8627365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocular Dominance Plasticity in Binocular Primary Visual Cortex Does Not Require C1q.
    Welsh CA; Stephany CÉ; Sapp RW; Stevens B
    J Neurosci; 2020 Jan; 40(4):769-783. PubMed ID: 31801811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult visual experience promotes recovery of primary visual cortex from long-term monocular deprivation.
    Fischer QS; Aleem S; Zhou H; Pham TA
    Learn Mem; 2007 Sep; 14(9):573-80. PubMed ID: 17761542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB.
    Pham TA; Graham SJ; Suzuki S; Barco A; Kandel ER; Gordon B; Lickey ME
    Learn Mem; 2004; 11(6):738-47. PubMed ID: 15537732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Curr Opin Neurobiol; 2006 Aug; 16(4):451-9. PubMed ID: 16837188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PirB restricts ocular-dominance plasticity in visual cortex.
    Syken J; Grandpre T; Kanold PO; Shatz CJ
    Science; 2006 Sep; 313(5794):1795-800. PubMed ID: 16917027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progressive maturation of silent synapses governs the duration of a critical period.
    Huang X; Stodieck SK; Goetze B; Cui L; Wong MH; Wenzel C; Hosang L; Dong Y; Löwel S; Schlüter OM
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):E3131-40. PubMed ID: 26015564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Major Vault Protein, a Candidate Gene in 16p11.2 Microdeletion Syndrome, Is Required for the Homeostatic Regulation of Visual Cortical Plasticity.
    Ip JPK; Nagakura I; Petravicz J; Li K; Wiemer EAC; Sur M
    J Neurosci; 2018 Apr; 38(16):3890-3900. PubMed ID: 29540554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.