These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26948344)

  • 1. Continuum modeling of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions.
    Ley MW; Bruus H
    Lab Chip; 2016 Apr; 16(7):1178-88. PubMed ID: 26948344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN; Swan JW; Su Y
    J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Analysis of Electrophoresis of Concentrated Suspensions of Colloidal Particles.
    Johnson TJ; Davis EJ
    J Colloid Interface Sci; 1999 Jul; 215(2):397-408. PubMed ID: 10419675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensional rheology of active suspensions.
    Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056307. PubMed ID: 20866322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic interactions suppress deformation of suspension drops in Poiseuille flow.
    Sadlej K; Wajnryb E; Ekiel-Jezewska ML
    J Chem Phys; 2010 Aug; 133(5):054901. PubMed ID: 20707548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic radius approximation for spherical particles suspended in a viscous fluid: influence of particle internal structure and boundary.
    Cichocki B; Ekiel-Jeżewska ML; Wajnryb E
    J Chem Phys; 2014 Apr; 140(16):164902. PubMed ID: 24784305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulation of concentrated fluid-particle suspension flows in axisymmetric geometries.
    Hofer M; Perktold K
    Biorheology; 1997; 34(4-5):261-79. PubMed ID: 9578803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow properties of freshly prepared ettringite suspensions in water at 25 degrees C.
    Vladu CM; Hall C; Maitland GC
    J Colloid Interface Sci; 2006 Feb; 294(2):466-72. PubMed ID: 16112125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings.
    Su Y; Swan JW; Zia RN
    J Chem Phys; 2017 Mar; 146(12):124903. PubMed ID: 28388164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of sedimentation on the threshold for Soret-driven convection in colloidal suspensions.
    Hadji L; DarAssi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013014. PubMed ID: 24580327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic interactions and the diffusivity of spheroidal particles.
    Marath NK; Wettlaufer JS
    J Chem Phys; 2019 Jul; 151(2):024107. PubMed ID: 31301717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions.
    Chu HCW; Zia RN
    J Colloid Interface Sci; 2019 Mar; 539():388-399. PubMed ID: 30597285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device.
    Yang SH; Lee DJ; Youn JR; Song YS
    Anal Chem; 2017 Mar; 89(6):3639-3647. PubMed ID: 28225617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing the Discrete Element Method for the Modeling of Viscosity in Concentrated Suspensions.
    Kroupa M; Vonka M; Soos M; Kosek J
    Langmuir; 2016 Aug; 32(33):8451-60. PubMed ID: 27479150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion, sedimentation, and rheology of concentrated suspensions of core-shell particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2012 Mar; 136(10):104902. PubMed ID: 22423856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic Interactions and Mean Settling Velocity of Porous Particles in a Dilute Suspension.
    Chen SB; Cai A
    J Colloid Interface Sci; 1999 Sep; 217(2):328-340. PubMed ID: 10469541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.
    Ahuja VR; van der Gucht J; Briels WJ
    J Chem Phys; 2018 Jan; 148(3):034902. PubMed ID: 29352779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay of particle shape and suspension properties: a study of cube-like particles.
    Audus DJ; Hassan AM; Garboczi EJ; Douglas JF
    Soft Matter; 2015 May; 11(17):3360-6. PubMed ID: 25797369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.