These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26948505)

  • 1. Controllable chaos in hybrid electro-optomechanical systems.
    Wang M; Lü XY; Ma JY; Xiong H; Si LG; Wu Y
    Sci Rep; 2016 Mar; 6():22705. PubMed ID: 26948505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PT-Symmetry-Breaking Chaos in Optomechanics.
    Lü XY; Jing H; Ma JY; Wu Y
    Phys Rev Lett; 2015 Jun; 114(25):253601. PubMed ID: 26197125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity optomechanical chaos.
    Zhu GL; Hu CS; Wu Y; Lü XY
    Fundam Res; 2023 Jan; 3(1):63-74. PubMed ID: 38933568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconfigurable chaos in electro-optomechanical system with negative Duffing resonators.
    Jin L; Guo Y; Ji X; Li L
    Sci Rep; 2017 Jul; 7(1):4822. PubMed ID: 28684760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems.
    Lü XY; Zhang WM; Ashhab S; Wu Y; Nori F
    Sci Rep; 2013 Oct; 3():2943. PubMed ID: 24126279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization.
    Lavrov R; Peil M; Jacquot M; Larger L; Udaltsov V; Dudley J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026207. PubMed ID: 19792231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the nonlinearity of optomechanical system via multiple mechanical modes.
    Zhang DW; Bin SW; You C; Hu CS
    Opt Express; 2022 Jan; 30(2):1314-1326. PubMed ID: 35209294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing.
    Zhou YR; Zhang QF; Liu FF; Han YH; Gao YP; Fan L; Zhang R; Cao C
    Opt Express; 2024 Jan; 32(2):2786-2803. PubMed ID: 38297799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multichannel cavity optomechanics for all-optical amplification of radio frequency signals.
    Li H; Chen Y; Noh J; Tadesse S; Li M
    Nat Commun; 2012; 3():1091. PubMed ID: 23033067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable phonon blockade in quadratically coupled optomechanical systems.
    Shi HQ; Zhou XT; Xu XW; Liu NH
    Sci Rep; 2018 Feb; 8(1):2212. PubMed ID: 29396514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wideband chaos generation using a delayed oscillator and a two-dimensional nonlinearity induced by a quadrature phase-shift-keying electro-optic modulator.
    Nourine M; Chembo YK; Larger L
    Opt Lett; 2011 Aug; 36(15):2833-5. PubMed ID: 21808328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable optomechanical coupling and Drude self-pulsation plasma locking in chip-scale optomechanical cavities.
    Huang Y; Flores JG; Cai Z; Wu J; Yu M; Kwong DL; Wen G; Churchill L; Wong CW
    Opt Express; 2017 Mar; 25(6):6851-6859. PubMed ID: 28381027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures.
    Okamoto H; Watanabe T; Ohta R; Onomitsu K; Gotoh H; Sogawa T; Yamaguchi H
    Nat Commun; 2015 Oct; 6():8478. PubMed ID: 26477487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfigurable re-entrant cavity for wireless coupling to an electro-optomechanical device.
    Menke T; Burns PS; Higginbotham AP; Kampel NS; Peterson RW; Cicak K; Simmonds RW; Regal CA; Lehnert KW
    Rev Sci Instrum; 2017 Sep; 88(9):094701. PubMed ID: 28964202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low Noise Opto-Electro-Mechanical Modulator for RF-to-Optical Transduction in Quantum Communications.
    Bonaldi M; Borrielli A; Di Giuseppe G; Malossi N; Morana B; Natali R; Piergentili P; Sarro PM; Serra E; Vitali D
    Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinearity enhancement and photon blockade in hybrid optomechanical systems.
    Yang J; Yang Z; Zhao C; Peng R; Chao S; Zhou L
    Opt Express; 2021 Oct; 29(22):36167-36179. PubMed ID: 34809035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity.
    Oden J; Lavrov R; Chembo YK; Larger L
    Chaos; 2017 Nov; 27(11):114311. PubMed ID: 29195337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength transduction from a 3D microwave cavity to telecom using piezoelectric optomechanical crystals.
    Ramp H; Clark TJ; Hauer BD; Doolin CD; Balram KC; Srinivasan K; Davis JP
    Appl Phys Lett; 2020; 116(17):. PubMed ID: 34815582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-gate transistor amplifier in a multimode optomechanical system.
    Chen YT; Du L; Liu YM; Zhang Y
    Opt Express; 2020 Mar; 28(5):7095-7107. PubMed ID: 32225944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear dynamics and chaos in an optomechanical beam.
    Navarro-Urrios D; Capuj NE; Colombano MF; García PD; Sledzinska M; Alzina F; Griol A; Martínez A; Sotomayor-Torres CM
    Nat Commun; 2017 Apr; 8():14965. PubMed ID: 28397813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.