These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26948505)

  • 21. Synthetic Gauge Fields in a Single Optomechanical Resonator.
    Chen Y; Zhang YL; Shen Z; Zou CL; Guo GC; Dong CH
    Phys Rev Lett; 2021 Mar; 126(12):123603. PubMed ID: 33834826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optomechanical nonlinearity enhanced optical sensors.
    Fan J; Huang C; Zhu L
    Opt Express; 2015 Feb; 23(3):2973-81. PubMed ID: 25836157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators.
    Peil M; Jacquot M; Chembo YK; Larger L; Erneux T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026208. PubMed ID: 19391821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chip-scale cavity optomechanics in lithium niobate.
    Jiang WC; Lin Q
    Sci Rep; 2016 Nov; 6():36920. PubMed ID: 27841301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology.
    Chen JH; Xiong YF; Xu F; Lu YQ
    Light Sci Appl; 2021 Apr; 10(1):78. PubMed ID: 33854031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-frequency reverse-time chaos generation using an optical matched filter.
    Jiang X; Liu D; Cheng M; Deng L; Fu S; Zhang M; Tang M; Shum P
    Opt Lett; 2016 Mar; 41(6):1157-60. PubMed ID: 26977658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible Control of Two-Channel Transmission and Group Delay in an Optomechanical System with Double Quantum Dots Driven by External Field.
    Wang F; Liu W; Wei Z; Meng H; Liu H
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controllable optical response in a three-mode optomechanical system by driving the cavities on different sidebands.
    Du L; Chen YT; Li Y; Wu JH
    Opt Express; 2019 Jul; 27(15):21843-21855. PubMed ID: 31510254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop.
    Jiang X; Cheng M; Luo F; Deng L; Fu S; Ke C; Zhang M; Tang M; Shum P; Liu D
    Opt Express; 2016 Dec; 24(25):28804-28814. PubMed ID: 27958524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phase-controlled amplification and slow light in a hybrid optomechanical system.
    Jiang C; Cui Y; Zhai Z; Yu H; Li X; Chen G
    Opt Express; 2019 Oct; 27(21):30473-30485. PubMed ID: 31684295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complexity in electro-optic delay dynamics: modelling, design and applications.
    Larger L
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120464. PubMed ID: 23960222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble.
    Xiao Y; Yu YF; Zhang ZM
    Opt Express; 2014 Jul; 22(15):17979-89. PubMed ID: 25089417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatic actuation of silicon optomechanical resonators.
    Sridaran S; Bhave SA
    Opt Express; 2011 May; 19(10):9020-6. PubMed ID: 21643155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Routes to spatiotemporal chaos in Kerr optical frequency combs.
    Coillet A; Chembo YK
    Chaos; 2014 Mar; 24(1):013113. PubMed ID: 24697375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase-mediated magnon chaos-order transition in cavity optomagnonics.
    Liu ZX; You C; Wang B; Xiong H; Wu Y
    Opt Lett; 2019 Feb; 44(3):507-510. PubMed ID: 30702665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A chip-scale integrated cavity-electro-optomechanics platform.
    Winger M; Blasius TD; Mayer Alegre TP; Safavi-Naeini AH; Meenehan S; Cohen J; Stobbe S; Painter O
    Opt Express; 2011 Dec; 19(25):24905-21. PubMed ID: 22273884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Laser-based optoelectronic generation of narrowband microwave chaos for radars and radio-communication scrambling.
    Chembo YK
    Opt Lett; 2017 Sep; 42(17):3431-3434. PubMed ID: 28957055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chaos M-ary modulation and demodulation method based on Hamilton oscillator and its application in communication.
    Fu Y; Li X; Li Y; Yang W; Song H
    Chaos; 2013 Mar; 23(1):013111. PubMed ID: 23556948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time delay estimation from the time series for optical chaos systems using deep learning.
    Gao X; Zhu W; Yang Q; Zeng D; Deng L; Chen Q; Cheng M
    Opt Express; 2021 Mar; 29(5):7904-7915. PubMed ID: 33726282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated III-V Photonic Crystal--Si waveguide platform with tailored optomechanical coupling.
    Tsvirkun V; Surrente A; Raineri F; Beaudoin G; Raj R; Sagnes I; Robert-Philip I; Braive R
    Sci Rep; 2015 Nov; 5():16526. PubMed ID: 26567535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.