These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26948576)

  • 1. Mechanical assessment of arterial dissection in health and disease: Advancements and challenges.
    Tong J; Cheng Y; Holzapfel GA
    J Biomech; 2016 Aug; 49(12):2366-73. PubMed ID: 26948576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on the biomechanical behaviour of the aorta.
    Wang X; Carpenter HJ; Ghayesh MH; Kotousov A; Zander AC; Amabili M; Psaltis PJ
    J Mech Behav Biomed Mater; 2023 Aug; 144():105922. PubMed ID: 37320894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of arterial biomechanics: insights into pathogenesis and treatment of vascular disease.
    Steinman DA; Vorp DA; Ethier CR
    J Vasc Surg; 2003 May; 37(5):1118-28. PubMed ID: 12756364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of Current Advances in the Mechanical Description and Quantification of Aortic Dissection Mechanisms.
    Brunet J; Pierrat B; Badel P
    IEEE Rev Biomed Eng; 2021; 14():240-255. PubMed ID: 31905148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel chemo-mechano-biological model of arterial tissue growth and remodelling.
    Aparício P; Thompson MS; Watton PN
    J Biomech; 2016 Aug; 49(12):2321-30. PubMed ID: 27184922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failure of the Porcine Ascending Aorta: Multidirectional Experiments and a Unifying Microstructural Model.
    Witzenburg CM; Dhume RY; Shah SB; Korenczuk CE; Wagner HP; Alford PW; Barocas VH
    J Biomech Eng; 2017 Mar; 139(3):0310051-03100514. PubMed ID: 27893044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries.
    Kamenskiy AV; Dzenis YA; Kazmi SA; Pemberton MA; Pipinos II; Phillips NY; Herber K; Woodford T; Bowen RE; Lomneth CS; MacTaggart JN
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1341-59. PubMed ID: 24710603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture.
    Kontopodis N; Metaxa E; Papaharilaou Y; Tavlas E; Tsetis D; Ioannou C
    Vascular; 2015 Feb; 23(1):65-77. PubMed ID: 24757027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanics of the Ascending Thoracic Aorta: A Clinical Perspective on Engineering Data.
    Emmott A; Garcia J; Chung J; Lachapelle K; El-Hamamsy I; Mongrain R; Cartier R; Leask RL
    Can J Cardiol; 2016 Jan; 32(1):35-47. PubMed ID: 26724509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of bioregulatory and coupled mechanobioregulatory mathematical models for secondary fracture healing.
    Wang M; Yang N
    Med Eng Phys; 2017 Oct; 48():90-102. PubMed ID: 28709928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of the posterior eye: a critical role in health and disease.
    Campbell IC; Coudrillier B; Ross Ethier C
    J Biomech Eng; 2014 Feb; 136(2):021005. PubMed ID: 24356942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of abdominal aortic aneurysm.
    Vorp DA
    J Biomech; 2007; 40(9):1887-902. PubMed ID: 17254589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics.
    Sturla F; Votta E; Stevanella M; Conti CA; Redaelli A
    Med Eng Phys; 2013 Dec; 35(12):1721-30. PubMed ID: 24001692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Computational Method for Analyzing the Biomechanics of Arterial Bruits.
    Zhu C; Seo JH; Bakhshaee H; Mittal R
    J Biomech Eng; 2017 May; 139(5):. PubMed ID: 28303271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of distributed arterial mechanical properties using a wave propagation model in a reverse way.
    Leguy CA; Bosboom EM; Gelderblom H; Hoeks AP; van de Vosse FN
    Med Eng Phys; 2010 Nov; 32(9):957-67. PubMed ID: 20675178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanobiological modelling of tendons: Review and future opportunities.
    Thompson MS; Bajuri MN; Khayyeri H; Isaksson H
    Proc Inst Mech Eng H; 2017 May; 231(5):369-377. PubMed ID: 28427319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational and experimental characterization of skin mechanics: identifying current challenges and future directions.
    Jor JW; Parker MD; Taberner AJ; Nash MP; Nielsen PM
    Wiley Interdiscip Rev Syst Biol Med; 2013; 5(5):539-56. PubMed ID: 23757148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and constitutive modeling approaches for a study of biomechanical properties of human coronary arteries.
    Jankowska MA; Bartkowiak-Jowsa M; Bedzinski R
    J Mech Behav Biomed Mater; 2015 Oct; 50():1-12. PubMed ID: 26086990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechano-chemo-biological Computational Models for Arteries in Health, Disease and Healing: From Tissue Remodelling to Drug-eluting Devices.
    Marino M; Vairo G; Wriggers P
    Curr Pharm Des; 2021; 27(16):1904-1917. PubMed ID: 32723253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries.
    Sommer G; Holzapfel GA
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):116-28. PubMed ID: 22100086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.