These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 26948607)
1. Natural oxygenation of Champagne wine during ageing on lees: A metabolomics picture of hormesis. Roullier-Gall C; Witting M; Moritz F; Gil RB; Goffette D; Valade M; Schmitt-Kopplin P; Gougeon RD Food Chem; 2016 Jul; 203():207-215. PubMed ID: 26948607 [TBL] [Abstract][Full Text] [Related]
2. N,S,O-Heterocycles in Aged Champagne Reserve Wines and Correlation with Free Amino Acid Concentrations. Le Menn N; Marchand S; de Revel G; Demarville D; Laborde D; Marchal R J Agric Food Chem; 2017 Mar; 65(11):2345-2356. PubMed ID: 28110533 [TBL] [Abstract][Full Text] [Related]
3. A grape and wine chemodiversity comparison of different appellations in Burgundy: vintage vs terroir effects. Roullier-Gall C; Boutegrabet L; Gougeon RD; Schmitt-Kopplin P Food Chem; 2014; 152():100-7. PubMed ID: 24444912 [TBL] [Abstract][Full Text] [Related]
4. The Oxidative Stability of Champagne Base Wines Aged on Lees in Barrels: A 2-Year Study. Maxe C; Romanet R; Parisot M; Gougeon RD; Nikolantonaki M Antioxidants (Basel); 2024 Mar; 13(3):. PubMed ID: 38539897 [TBL] [Abstract][Full Text] [Related]
5. Development of a Wine Metabolomics Approach for the Authenticity Assessment of Selected Greek Red Wines. Tzachristas A; Dasenaki ME; Aalizadeh R; Thomaidis NS; Proestos C Molecules; 2021 May; 26(10):. PubMed ID: 34064666 [TBL] [Abstract][Full Text] [Related]
6. Discrimination of rosé wines using shotgun metabolomics with a genetic algorithm and MS ion intensity ratios. Gil M; Reynes C; Cazals G; Enjalbal C; Sabatier R; Saucier C Sci Rep; 2020 Jan; 10(1):1170. PubMed ID: 31980696 [TBL] [Abstract][Full Text] [Related]
7. Foodomics platform for the assay of thiols in wines with fluorescence derivatization and ultra performance liquid chromatography mass spectrometry using multivariate statistical analysis. Inoue K; Nishimura M; Tsutsui H; Min JZ; Todoroki K; Kauffmann JM; Toyo'oka T J Agric Food Chem; 2013 Feb; 61(6):1228-34. PubMed ID: 23339461 [TBL] [Abstract][Full Text] [Related]
8. Expressing forest origins in the chemical composition of cooperage oak woods and corresponding wines by using FTICR-MS. Gougeon RD; Lucio M; De Boel A; Frommberger M; Hertkorn N; Peyron D; Chassagne D; Feuillat F; Cayot P; Voilley A; Gebefügi I; Schmitt-Kopplin P Chemistry; 2009; 15(3):600-11. PubMed ID: 19040225 [TBL] [Abstract][Full Text] [Related]
9. 1H NMR-based metabonomics for the classification of Greek wines according to variety, region, and vintage. Comparison with HPLC data. Anastasiadi M; Zira A; Magiatis P; Haroutounian SA; Skaltsounis AL; Mikros E J Agric Food Chem; 2009 Dec; 57(23):11067-74. PubMed ID: 19904930 [TBL] [Abstract][Full Text] [Related]
10. Anthocyanins as markers for the classification of Argentinean wines according to botanical and geographical origin. Chemometric modeling of liquid chromatography-mass spectrometry data. Pisano PL; Silva MF; Olivieri AC Food Chem; 2015 May; 175():174-80. PubMed ID: 25577067 [TBL] [Abstract][Full Text] [Related]
11. Acetaldehyde reactions during wine bottle storage. Han G; Webb MR; Waterhouse AL Food Chem; 2019 Aug; 290():208-215. PubMed ID: 31000039 [TBL] [Abstract][Full Text] [Related]
12. Untargeted metabolomic analysis of Chinese red wines for geographical origin traceability by UPLC-QTOF-MS coupled with chemometrics. Pan Y; Gu HW; Lv Y; Yin XL; Chen Y; Long W; Fu H; She Y Food Chem; 2022 Nov; 394():133473. PubMed ID: 35716498 [TBL] [Abstract][Full Text] [Related]
13. Effect of the aging on lees and other alternative techniques on the low molecular weight phenols of Tempranillo red wine aged in oak barrels. Del Barrio-Galán R; Pérez-Magariño S; Ortega-Heras M Anal Chim Acta; 2012 Jun; 732():53-63. PubMed ID: 22688034 [TBL] [Abstract][Full Text] [Related]
14. Gougeon L; da Costa G; Guyon F; Richard T Food Chem; 2019 Dec; 301():125257. PubMed ID: 31357002 [TBL] [Abstract][Full Text] [Related]
15. High precision mass measurements for wine metabolomics. Roullier-Gall C; Witting M; Gougeon RD; Schmitt-Kopplin P Front Chem; 2014; 2():102. PubMed ID: 25431760 [TBL] [Abstract][Full Text] [Related]
16. Studying the effect of storage conditions on the metabolite content of red wine using HILIC LC-MS based metabolomics. Arapitsas P; Corte AD; Gika H; Narduzzi L; Mattivi F; Theodoridis G Food Chem; 2016 Apr; 197 Pt B():1331-40. PubMed ID: 26675875 [TBL] [Abstract][Full Text] [Related]
17. Told through the wine: A liquid chromatography-mass spectrometry interplatform comparison reveals the influence of the global approach on the final annotated metabolites in non-targeted metabolomics. Díaz R; Gallart-Ayala H; Sancho JV; Nuñez O; Zamora T; Martins CP; Hernández F; Hernández-Cassou S; Saurina J; Checa A J Chromatogr A; 2016 Feb; 1433():90-7. PubMed ID: 26795279 [TBL] [Abstract][Full Text] [Related]
18. Study of the role of oxygen in the evolution of red wine colour under different ageing conditions in barrels and bottles. Sánchez-Gómez R; Del Alamo-Sanza M; Martínez-Martínez V; Nevares I Food Chem; 2020 Oct; 328():127040. PubMed ID: 32512467 [TBL] [Abstract][Full Text] [Related]
19. Changes in the sotolon content of dry white wines during barrel and bottle aging. Lavigne V; Pons A; Darriet P; Dubourdieu D J Agric Food Chem; 2008 Apr; 56(8):2688-93. PubMed ID: 18373351 [TBL] [Abstract][Full Text] [Related]
20. Metabolic fingerprinting based on high-resolution tandem mass spectrometry: a reliable tool for wine authentication? Rubert J; Lacina O; Fauhl-Hassek C; Hajslova J Anal Bioanal Chem; 2014 Nov; 406(27):6791-803. PubMed ID: 24866710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]