BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26948634)

  • 1. Spectroscopy analysis of phenolic and sugar patterns in a food grade chestnut tannin.
    Ricci A; Lagel MC; Parpinello GP; Pizzi A; Kilmartin PA; Versari A
    Food Chem; 2016 Jul; 203():425-429. PubMed ID: 26948634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS.
    Comandini P; Lerma-García MJ; Simó-Alfonso EF; Toschi TG
    Food Chem; 2014 Aug; 157():290-5. PubMed ID: 24679783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage.
    Sanz M; Cadahía E; Esteruelas E; Muñoz AM; Fernández de Simón B; Hernández T; Estrella I
    J Agric Food Chem; 2010 Sep; 58(17):9631-40. PubMed ID: 20687564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methodology optimization for the analysis of phenolic compounds in chestnut (
    Fuente-Maqueda F; Rodríguez A; Majada J; Fernández B; Feito I
    Food Sci Technol Int; 2020 Sep; 26(6):520-534. PubMed ID: 32223433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents.
    Vella FM; Laratta B; La Cara F; Morana A
    Nat Prod Res; 2018 May; 32(9):1022-1032. PubMed ID: 28920445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chestnut shells (Italian cultivar "Marrone di Roccadaspide" PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MS
    Cerulli A; Napolitano A; Masullo M; Hošek J; Pizza C; Piacente S
    Food Res Int; 2020 Mar; 129():108787. PubMed ID: 32036927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive analysis of chestnut tannins by reversed phase and hydrophilic interaction chromatography coupled to ion mobility and high resolution mass spectrometry.
    Venter P; Causon T; Pasch H; de Villiers A
    Anal Chim Acta; 2019 Dec; 1088():150-167. PubMed ID: 31623711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of feed moisture and temperature on tannin content, antioxidant and antimicrobial activities of extruded chestnuts.
    Obiang-Obounou BW; Ryu GH
    Food Chem; 2013 Dec; 141(4):4166-70. PubMed ID: 23993601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolyzable Tannins from Sweet Chestnut Fractions Obtained by a Sustainable and Eco-friendly Industrial Process.
    Campo M; Pinelli P; Romani A
    Nat Prod Commun; 2016 Mar; 11(3):409-15. PubMed ID: 27169194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry.
    Fernandez K; Agosin E
    J Agric Food Chem; 2007 Sep; 55(18):7294-300. PubMed ID: 17696445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ozone gas as a storage treatment to control Gnomoniopsis castanea, preserving chestnut quality.
    Vettraino AM; Bianchini L; Caradonna V; Forniti R; Goffi V; Zambelli M; Testa A; Vinciguerra V; Botondi R
    J Sci Food Agric; 2019 Oct; 99(13):6060-6065. PubMed ID: 31226223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations.
    Mercurio MD; Dambergs RG; Cozzolino D; Herderich MJ; Smith PA
    J Agric Food Chem; 2010 Dec; 58(23):12313-9. PubMed ID: 21047137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemometric compositional analysis of phenolic compounds in fermenting samples and wines using different infrared spectroscopy techniques.
    Aleixandre-Tudo JL; Nieuwoudt H; Aleixandre JL; du Toit W
    Talanta; 2018 Jan; 176():526-536. PubMed ID: 28917786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Castanea sativa by-products: a review on added value and sustainable application.
    Braga N; Rodrigues F; Oliveira MB
    Nat Prod Res; 2015; 29(1):1-18. PubMed ID: 25204784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of wine tannin classification using Fourier transform mid-infrared spectrometry and sensory analysis.
    Fernández K; Labarca X; Bordeu E; Guesalaga A; Agosin E
    Appl Spectrosc; 2007 Nov; 61(11):1163-7. PubMed ID: 18028694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of phenolic compounds during red winemaking using FT-MIR spectroscopy and PLS-regression.
    Fragoso S; Aceña L; Guasch J; Mestres M; Busto O
    J Agric Food Chem; 2011 Oct; 59(20):10795-802. PubMed ID: 21905733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HPLC, NMR and MALDI-TOF MS analysis of condensed tannins from Lithocarpus glaber leaves with potent free radical scavenging activity.
    Zhang LL; Lin YM
    Molecules; 2008 Dec; 13(12):2986-97. PubMed ID: 19052523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin E profile as a reliable authenticity discrimination factor between chestnut (Castanea sativa Mill.) cultivars.
    Barreira JC; Alves RC; Casal S; Ferreira IC; Oliveira MB; Pereira JA
    J Agric Food Chem; 2009 Jun; 57(12):5524-8. PubMed ID: 19489539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary and secondary metabolite composition of kernels from three cultivars of Portuguese chestnut (Castanea sativa Mill.) at different stages of industrial transformation.
    Do Carmo Barbosa Mendes De Vasconcelos M; Bennett RN; Rosa EA; Ferreira Cardoso JV
    J Agric Food Chem; 2007 May; 55(9):3508-16. PubMed ID: 17407304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of physicochemical factors related to the automatic pellicle removal in Korean chestnut (Castanea crenata).
    Hwang JY; Hwang IK; Park JB
    J Agric Food Chem; 2001 Dec; 49(12):6045-9. PubMed ID: 11743806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.