BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 26948639)

  • 1. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM).
    Šumić Z; Vakula A; Tepić A; Čakarević J; Vitas J; Pavlić B
    Food Chem; 2016 Jul; 203():465-475. PubMed ID: 26948639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total phenolics content, anthocyanins, and dietary fiber content of apple pomace powders produced by vacuum-belt drying.
    Yan H; Kerr WL
    J Sci Food Agric; 2013 Apr; 93(6):1499-504. PubMed ID: 23080413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits.
    Wojdyło A; Figiel A; Oszmiański J
    J Agric Food Chem; 2009 Feb; 57(4):1337-43. PubMed ID: 19170638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Phenols Content and Antioxidant Activity of Fruits from Different Maturity Stages of
    Wang Y; Qi D; Wang S; Cao X; Ye Y; Suo Y
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30513641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of operating conditions in freeze-drying on the nutritional properties of blueberries.
    Reyes A; Evseev A; Mahn A; Bubnovich V; Bustos R; Scheuermann E
    Int J Food Sci Nutr; 2011 May; 62(3):303-6. PubMed ID: 21214411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ultrahigh pressure and ultrasound pretreatments on properties of strawberry chips prepared by vacuum-freeze drying.
    Zhang L; Liao L; Qiao Y; Wang C; Shi D; An K; Hu J
    Food Chem; 2020 Jan; 303():125386. PubMed ID: 31473454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods.
    Wray D; Ramaswamy HS
    J Food Sci; 2015 Dec; 80(12):E2792-802. PubMed ID: 26565564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Optimization of vacuum belt drying process of Gardeniae Fructus in Reduning injection by Box-Behnken design-response surface methodology].
    Huang DS; Shi W; Han L; Sun K; Chen GB; Wu Jian-xiong ; Xu GH; Bi YA; Wang ZZ; Xiao W
    Zhongguo Zhong Yao Za Zhi; 2015 Jun; 40(12):2330-5. PubMed ID: 26591519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of frozen sour cherries vacuum drying process.
    Sumić Z; Tepić A; Vidović S; Jokić S; Malbaša R
    Food Chem; 2013 Jan; 136(1):55-63. PubMed ID: 23017392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from comfrey (Symphytum officinale L.) root.
    Shang H; Zhou H; Duan M; Li R; Wu H; Lou Y
    Int J Biol Macromol; 2018 Jun; 112():889-899. PubMed ID: 29428386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices.
    Xu B; Chen J; Sylvain Tiliwa E; Yan W; Roknul Azam SM; Yuan J; Wei B; Zhou C; Ma H
    Ultrason Sonochem; 2021 Oct; 78():105714. PubMed ID: 34411845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drying kinetics and quality characteristics of microwave-vacuum dried Saskatoon berries.
    Meda V; Gupta M; Opoku A
    J Microw Power Electromagn Energy; 2008; 42(4):4-12. PubMed ID: 19227059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different drying methods and storage time on the retention of bioactive compounds and antibacterial activity of wine grape pomace (Pinot Noir and Merlot).
    Tseng A; Zhao Y
    J Food Sci; 2012 Sep; 77(9):H192-201. PubMed ID: 22908851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vacuum Drying for Extending Litchi Shelf-Life: Vitamin C, Total Phenolics, Texture and Shelf-Life Assessment.
    Richter Reis F; de Oliveira AC; Gadelha GGP; de Abreu MB; Soares HI
    Plant Foods Hum Nutr; 2017 Jun; 72(2):120-125. PubMed ID: 28120142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying.
    Saikia S; Mahnot NK; Mahanta CL
    Food Chem; 2015 Mar; 171():144-52. PubMed ID: 25308654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from Astragalus cicer L.
    Shang H; Wang M; Li R; Duan M; Wu H; Zhou H
    Sci Rep; 2018 Feb; 8(1):3359. PubMed ID: 29463789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention of antioxidant capacity of vacuum microwave dried cranberry.
    Leusink GJ; Kitts DD; Yaghmaee P; Durance T
    J Food Sci; 2010 Apr; 75(3):C311-6. PubMed ID: 20492285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of nectarine drying under near infrared - Vacuum conditions.
    Alaei B; Chayjan RA
    Acta Sci Pol Technol Aliment; 2015; 14(1):15-27. PubMed ID: 28068016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Composition and Antioxidant Properties of Powders Obtained from Different Plum Juice Formulations.
    Michalska A; Wojdyło A; Łysiak GP; Figiel A
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28106740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Spray-Drying Parameters on In Vitro Functional Properties of Camu-Camu (Myrciaria dubia Mc. Vaugh): A Typical Amazonian Fruit.
    Fujita A; Souza VB; Daza LD; Fávaro-Trindade CS; Granato D; Genovese MI
    J Food Sci; 2017 May; 82(5):1083-1091. PubMed ID: 28329408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.