These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 26948707)
1. Specific electrical capacitance and voltage breakdown as a function of temperature for different planar lipid bilayers. Velikonja A; Kramar P; Miklavčič D; Maček Lebar A Bioelectrochemistry; 2016 Dec; 112():132-7. PubMed ID: 26948707 [TBL] [Abstract][Full Text] [Related]
2. Probing Thermotropic Phase Behavior of Dipalmitoylphosphatidylcholine Bilayers from Electrical and Topographic Data in a Horizontal Black Lipid Membrane Model. Corvalán NA; Perillo MA Langmuir; 2020 Feb; 36(5):1083-1093. PubMed ID: 31941279 [TBL] [Abstract][Full Text] [Related]
3. Electrical capacitance of lipid bilayer membranes of hydrogenated egg lecithin at the temperature phase transition. Antonov VF; Anosov AA; Norik VP; Korepanova EA; Smirnova EY Eur Biophys J; 2003 Mar; 32(1):55-9. PubMed ID: 12632207 [TBL] [Abstract][Full Text] [Related]
4. Electroporation of archaeal lipid membranes using MD simulations. Polak A; Tarek M; Tomšič M; Valant J; Ulrih NP; Jamnik A; Kramar P; Miklavčič D Bioelectrochemistry; 2014 Dec; 100():18-26. PubMed ID: 24461702 [TBL] [Abstract][Full Text] [Related]
5. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
6. Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract. Taylor GJ; Sarles SA Langmuir; 2015; 31(1):325-37. PubMed ID: 25514167 [TBL] [Abstract][Full Text] [Related]
7. Effect of high pressure on fully hydrated DPPC and POPC bilayers. Chen R; Poger D; Mark AE J Phys Chem B; 2011 Feb; 115(5):1038-44. PubMed ID: 21194215 [TBL] [Abstract][Full Text] [Related]
8. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; Lewis RN; McElhaney RN Chem Phys Lipids; 2015 Oct; 191():123-35. PubMed ID: 26368000 [TBL] [Abstract][Full Text] [Related]
9. An electron spin resonance study of interactions between gramicidin A' and phosphatidylcholine bilayers. Ge M; Freed JH Biophys J; 1993 Nov; 65(5):2106-23. PubMed ID: 7507719 [TBL] [Abstract][Full Text] [Related]
10. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051 [TBL] [Abstract][Full Text] [Related]
11. Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers. Leekumjorn S; Sum AK Biochim Biophys Acta; 2007 Feb; 1768(2):354-65. PubMed ID: 17173856 [TBL] [Abstract][Full Text] [Related]
12. Mixing of oxidized and bilayer phospholipids. Singh J; Ranganathan R Biochim Biophys Acta; 2015 Jul; 1848(7):1472-80. PubMed ID: 25839354 [TBL] [Abstract][Full Text] [Related]
13. Kinetics for the subgel phase formation in DPPC/DOPC mixed bilayers. Kinoshita M; Ito K; Kato S Chem Phys Lipids; 2010 Sep; 163(7):712-9. PubMed ID: 20599851 [TBL] [Abstract][Full Text] [Related]
14. AFM study of the thermotropic behaviour of supported DPPC bilayers with and without the model peptide WALP23. Yarrow F; Kuipers BW Chem Phys Lipids; 2011 Jan; 164(1):9-15. PubMed ID: 20932964 [TBL] [Abstract][Full Text] [Related]
15. The effect of cholesterol on the solubilization of phosphatidylcholine bilayers by the non-ionic surfactant Triton X-100. Schnitzer E; Kozlov MM; Lichtenberg D Chem Phys Lipids; 2005 May; 135(1):69-82. PubMed ID: 15854626 [TBL] [Abstract][Full Text] [Related]
16. A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs. Benesch MG; Lewis RN; Mannock DA; McElhaney RN Chem Phys Lipids; 2015 Apr; 187():34-49. PubMed ID: 25732198 [TBL] [Abstract][Full Text] [Related]
17. A comparative differential scanning calorimetry study of the effects of cholesterol and various oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; McElhaney RN Chem Phys Lipids; 2016 Feb; 195():21-33. PubMed ID: 26620814 [TBL] [Abstract][Full Text] [Related]
18. Partition of dopamine antagonists into synthetic lipid bilayers: the effect of membrane structure and composition. Sarmento AB; de Lima MC; Oliveira CR J Pharm Pharmacol; 1993 Jul; 45(7):601-5. PubMed ID: 8105052 [TBL] [Abstract][Full Text] [Related]
19. The effect of temperature on supported dipalmitoylphosphatidylcholine (DPPC) bilayers: structure and lubrication performance. Wang M; Zander T; Liu X; Liu C; Raj A; Florian Wieland DC; Garamus VM; Willumeit-Römer R; Claesson PM; Dėdinaitė A J Colloid Interface Sci; 2015 May; 445():84-92. PubMed ID: 25596372 [TBL] [Abstract][Full Text] [Related]
20. Variation of thermal conductivity of DPPC lipid bilayer membranes around the phase transition temperature. Youssefian S; Rahbar N; Lambert CR; Van Dessel S J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]