These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26949255)

  • 1. No current evidence for widespread dosage compensation in S. cerevisiae.
    Torres EM; Springer M; Amon A
    Elife; 2016 Mar; 5():e10996. PubMed ID: 26949255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further support for aneuploidy tolerance in wild yeast and effects of dosage compensation on gene copy-number evolution.
    Gasch AP; Hose J; Newton MA; Sardi M; Yong M; Wang Z
    Elife; 2016 Mar; 5():e14409. PubMed ID: 26949252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosage compensation can buffer copy-number variation in wild yeast.
    Hose J; Yong CM; Sardi M; Wang Z; Newton MA; Gasch AP
    Elife; 2015 May; 4():. PubMed ID: 25955966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome-Specific and Global Effects of Aneuploidy in Saccharomyces cerevisiae.
    Dodgson SE; Kim S; Costanzo M; Baryshnikova A; Morse DL; Kaiser CA; Boone C; Amon A
    Genetics; 2016 Apr; 202(4):1395-409. PubMed ID: 26837754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation.
    Bond U; Neal C; Donnelly D; James TC
    Curr Genet; 2004 Jun; 45(6):360-70. PubMed ID: 15103502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aneuploidy-induced proteotoxic stress can be effectively tolerated without dosage compensation, genetic mutations, or stress responses.
    Larrimore KE; Barattin-Voynova NS; Reid DW; Ng DTW
    BMC Biol; 2020 Sep; 18(1):117. PubMed ID: 32900371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting Gene Expression Changes Accompanying a Ploidy-Based Phenotypic Switch.
    Cromie GA; Tan Z; Hays M; Jeffery EW; Dudley AM
    G3 (Bethesda); 2017 Jan; 7(1):233-246. PubMed ID: 27836908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aneuploid proliferation defects in yeast are not driven by copy number changes of a few dosage-sensitive genes.
    Bonney ME; Moriya H; Amon A
    Genes Dev; 2015 May; 29(9):898-903. PubMed ID: 25934502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast.
    Pavelka N; Rancati G; Zhu J; Bradford WD; Saraf A; Florens L; Sanderson BW; Hattem GL; Li R
    Nature; 2010 Nov; 468(7321):321-5. PubMed ID: 20962780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy.
    Ryu HY; Wilson NR; Mehta S; Hwang SS; Hochstrasser M
    Genes Dev; 2016 Aug; 30(16):1881-94. PubMed ID: 27585592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide expression monitoring in Saccharomyces cerevisiae.
    Wodicka L; Dong H; Mittmann M; Ho MH; Lockhart DJ
    Nat Biotechnol; 1997 Dec; 15(13):1359-67. PubMed ID: 9415887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered dosage of the Saccharomyces cerevisiae spindle pole body duplication gene, NDC1, leads to aneuploidy and polyploidy.
    Chial HJ; Giddings TH; Siewert EA; Hoyt MA; Winey M
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10200-5. PubMed ID: 10468586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast.
    Dephoure N; Hwang S; O'Sullivan C; Dodgson SE; Gygi SP; Amon A; Torres EM
    Elife; 2014 Jul; 3():e03023. PubMed ID: 25073701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-Translational Dosage Compensation Buffers Genetic Perturbations to Stoichiometry of Protein Complexes.
    Ishikawa K; Makanae K; Iwasaki S; Ingolia NT; Moriya H
    PLoS Genet; 2017 Jan; 13(1):e1006554. PubMed ID: 28121980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aneuploidy underlies a multicellular phenotypic switch.
    Tan Z; Hays M; Cromie GA; Jeffery EW; Scott AC; Ahyong V; Sirr A; Skupin A; Dudley AM
    Proc Natl Acad Sci U S A; 2013 Jul; 110(30):12367-72. PubMed ID: 23812752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular signatures of aneuploidy-driven adaptive evolution.
    Kaya A; Mariotti M; Tyshkovskiy A; Zhou X; Hulke ML; Ma S; Gerashchenko MV; Koren A; Gladyshev VN
    Nat Commun; 2020 Jan; 11(1):588. PubMed ID: 32001709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide construction of a series of designed segmental aneuploids in Saccharomyces cerevisiae.
    Natesuntorn W; Iwami K; Matsubara Y; Sasano Y; Sugiyama M; Kaneko Y; Harashima S
    Sci Rep; 2015 Jul; 5():12510. PubMed ID: 26224198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of aneuploidy on cellular physiology and cell division in haploid yeast.
    Torres EM; Sokolsky T; Tucker CM; Chan LY; Boselli M; Dunham MJ; Amon A
    Science; 2007 Aug; 317(5840):916-24. PubMed ID: 17702937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic dissection of transcriptional regulation in budding yeast.
    Brem RB; Yvert G; Clinton R; Kruglyak L
    Science; 2002 Apr; 296(5568):752-5. PubMed ID: 11923494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in rRNA content in a Saccharomyces cerevisiae suppressor strain from rrn10 disruptant by rDNA cluster duplication.
    Khatun F; Sasano Y; Sugiyama M; Kaneko Y; Harashima S
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):9011-9. PubMed ID: 23872957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.