These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26949751)

  • 1. Macrophages and the Viral Dissemination Super Highway.
    Klepper A; Branch AD
    EC Microbiol; 2015; 2(3):328-336. PubMed ID: 26949751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus.
    Matloubian M; Kolhekar SR; Somasundaram T; Ahmed R
    J Virol; 1993 Dec; 67(12):7340-9. PubMed ID: 7693969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics to study macrophage response to viral infection.
    Nyman TA; Matikainen S
    J Proteomics; 2018 May; 180():99-107. PubMed ID: 28647517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential susceptibility of macrophages to serotype II feline coronaviruses correlates with differences in the viral spike protein.
    Shirato K; Chang HW; Rottier PJM
    Virus Res; 2018 Aug; 255():14-23. PubMed ID: 29936068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein.
    Rottier PJ; Nakamura K; Schellen P; Volders H; Haijema BJ
    J Virol; 2005 Nov; 79(22):14122-30. PubMed ID: 16254347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Envelope gene sequences encoding variable regions 3 and 4 are involved in macrophage tropism of feline immunodeficiency virus.
    Vahlenkamp TW; De Ronde A; Schuurman NNMP; van Vliet ALW; van Drunen J; Horzinek MC; Egberink HF
    J Gen Virol; 1999 Oct; 80 ( Pt 10)():2639-2646. PubMed ID: 10573157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human cytomegalovirus induces monocyte differentiation and migration as a strategy for dissemination and persistence.
    Smith MS; Bentz GL; Alexander JS; Yurochko AD
    J Virol; 2004 May; 78(9):4444-53. PubMed ID: 15078925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deficiency of the B cell-activating factor receptor results in limited CD169+ macrophage function during viral infection.
    Xu HC; Huang J; Khairnar V; Duhan V; Pandyra AA; Grusdat M; Shinde P; McIlwain DR; Maney SK; Gommerman J; Löhning M; Ohashi PS; Mak TW; Pieper K; Sic H; Speletas M; Eibel H; Ware CF; Tumanov AV; Kruglov AA; Nedospasov SA; Häussinger D; Recher M; Lang KS; Lang PA
    J Virol; 2015 May; 89(9):4748-59. PubMed ID: 25673724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Human Cytomegalovirus Chemokine vCXCL-1 Modulates Normal Dissemination Kinetics of Murine Cytomegalovirus
    Jackson JW; Hancock TJ; LaPrade E; Dogra P; Gann ER; Masi TJ; Panchanathan R; Miller WE; Wilhelm SW; Sparer TE
    mBio; 2019 Jun; 10(3):. PubMed ID: 31239384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo selection of lymphocyte-tropic and macrophage-tropic variants of lymphocytic choriomeningitis virus during persistent infection.
    King CC; de Fries R; Kolhekar SR; Ahmed R
    J Virol; 1990 Nov; 64(11):5611-6. PubMed ID: 1976825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism and consequence of viral persistence in cells of the immune system and neurons.
    Oldstone MB; Rall GF
    Intervirology; 1993; 35(1-4):116-21. PubMed ID: 8407238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Too much of a good thing: Sustained type 1 interferon signaling limits humoral responses to secondary viral infection.
    Teijaro JR
    Eur J Immunol; 2016 Feb; 46(2):300-2. PubMed ID: 26783074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avian Flavivirus Infection of Monocytes/Macrophages by Extensive Subversion of Host Antiviral Innate Immune Responses.
    Ma Y; Liang Y; Wang N; Cui L; Chen Z; Wu H; Zhu C; Wang Z; Liu S; Li H
    J Virol; 2019 Nov; 93(22):. PubMed ID: 31462573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human cytomegalovirus persistence and latency in endothelial cells and macrophages.
    Jarvis MA; Nelson JA
    Curr Opin Microbiol; 2002 Aug; 5(4):403-7. PubMed ID: 12160860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monocytes-macrophages are a potential target in human infection with West Nile virus through blood transfusion.
    Rios M; Zhang MJ; Grinev A; Srinivasan K; Daniel S; Wood O; Hewlett IK; Dayton AI
    Transfusion; 2006 Apr; 46(4):659-67. PubMed ID: 16584445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infection and Functional Modulation of Human Monocytes and Macrophages by Varicella-Zoster Virus.
    Kennedy JJ; Steain M; Slobedman B; Abendroth A
    J Virol; 2019 Feb; 93(3):. PubMed ID: 30404793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residues K465 and G467 within the Cytoplasmic Domain of GP2 Play a Critical Role in the Persistence of Lymphocytic Choriomeningitis Virus in Mice.
    Iwasaki M; Ng CT; Cubitt B; de la Torre JC
    J Virol; 2016 Nov; 90(22):10102-10112. PubMed ID: 27581982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human cytomegalovirus productively infects primary differentiated macrophages.
    Ibanez CE; Schrier R; Ghazal P; Wiley C; Nelson JA
    J Virol; 1991 Dec; 65(12):6581-8. PubMed ID: 1658363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive selection in vivo by a cell for one variant over another: implications for RNA virus quasispecies in vivo.
    Dockter J; Evans CF; Tishon A; Oldstone MB
    J Virol; 1996 Mar; 70(3):1799-803. PubMed ID: 8627703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of human cytomegalovirus with monocytes/macrophages: a love-hate relationship.
    Michelson S
    Pathol Biol (Paris); 1997 Feb; 45(2):146-58. PubMed ID: 9247037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.