These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26949816)

  • 1. Subsystem Analysis for the Fragment Molecular Orbital Method and Its Application to Protein-Ligand Binding in Solution.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2016 Apr; 120(14):2218-31. PubMed ID: 26949816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent Screening in Zwitterions Analyzed with the Fragment Molecular Orbital Method.
    Fedorov DG
    J Chem Theory Comput; 2019 Oct; 15(10):5404-5416. PubMed ID: 31461277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2007 Aug; 111(30):6904-14. PubMed ID: 17511437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic study of the embedding potential description in the fragment molecular orbital method.
    Fedorov DG; Slipchenko LV; Kitaura K
    J Phys Chem A; 2010 Aug; 114(33):8742-53. PubMed ID: 20441228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio quantum mechanical study of the binding energies of human estrogen receptor alpha with its ligands: an application of fragment molecular orbital method.
    Fukuzawa K; Kitaura K; Uebayasi M; Nakata K; Kaminuma T; Nakano T
    J Comput Chem; 2005 Jan; 26(1):1-10. PubMed ID: 15521089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG; Nagata T; Kitaura K; Nakamura S
    J Chem Theory Comput; 2015 Jul; 11(7):3053-64. PubMed ID: 26575742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully analytic energy gradient in the fragment molecular orbital method.
    Nagata T; Brorsen K; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2011 Mar; 134(12):124115. PubMed ID: 21456653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VISCANA: visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening.
    Amari S; Aizawa M; Zhang J; Fukuzawa K; Mochizuki Y; Iwasawa Y; Nakata K; Chuman H; Nakano T
    J Chem Inf Model; 2006; 46(1):221-30. PubMed ID: 16426058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method.
    Fedorov DG
    J Phys Chem A; 2020 Jun; 124(24):4956-4971. PubMed ID: 32447956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.
    Otsuka T; Okimoto N; Taiji M
    J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method.
    Fedorov DG; Jensen JH; Deka RC; Kitaura K
    J Phys Chem A; 2008 Nov; 112(46):11808-16. PubMed ID: 18942816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG
    J Phys Chem A; 2016 Dec; 120(49):9794-9804. PubMed ID: 27973804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum chemical associations ligand-residue: their role to predict flavonoid binding sites in proteins.
    Rolo-Naranjo A; Codorniu-Hernández E; Ferro N
    J Chem Inf Model; 2010 May; 50(5):924-33. PubMed ID: 20373791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems.
    Nakata H; Fedorov DG; Yokojima S; Kitaura K; Sakurai M; Nakamura S
    J Chem Phys; 2014 Apr; 140(14):144101. PubMed ID: 24735282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding response: a descriptor for selecting ligand binding site on protein surfaces.
    Zhong S; MacKerell AD
    J Chem Inf Model; 2007; 47(6):2303-15. PubMed ID: 17900106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an Analysis Toolkit, AnalysisFMO, to Visualize Interaction Energies Generated by Fragment Molecular Orbital Calculations.
    Tokiwa T; Nakano S; Yamamoto Y; Ishikawa T; Ito S; Sladek V; Fukuzawa K; Mochizuki Y; Tokiwa H; Misaizu F; Shigeta Y
    J Chem Inf Model; 2019 Jan; 59(1):25-30. PubMed ID: 30517784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular interactions between estrogen receptor and its ligand studied by the ab initio fragment molecular orbital method.
    Fukuzawa K; Mochizuki Y; Tanaka S; Kitaura K; Nakano T
    J Phys Chem B; 2006 Aug; 110(32):16102-10. PubMed ID: 16898767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.