These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26950215)

  • 21. Brownian dynamics simulations of the recognition of the scorpion toxin maurotoxin with the voltage-gated potassium ion channels.
    Fu W; Cui M; Briggs JM; Huang X; Xiong B; Zhang Y; Luo X; Shen J; Ji R; Jiang H; Chen K
    Biophys J; 2002 Nov; 83(5):2370-85. PubMed ID: 12414674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational dynamics of the inner pore helix of voltage-gated potassium channels.
    Choe S; Grabe M
    J Chem Phys; 2009 Jun; 130(21):215103. PubMed ID: 19508102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K
    Wood ML; Freites JA; Tombola F; Tobias DJ
    J Phys Chem B; 2017 Apr; 121(15):3804-3812. PubMed ID: 28074656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials.
    Watanabe I; Zhu J; Sutachan JJ; Gottschalk A; Recio-Pinto E; Thornhill WB
    Brain Res; 2007 May; 1144():1-18. PubMed ID: 17324383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rearrangement of potassium ions and Kv1.1/Kv1.2 potassium channels in regenerating axons following end-to-end neurorrhaphy: ionic images from TOF-SIMS.
    Liu CH; Chang HM; Wu TH; Chen LY; Yang YS; Tseng TJ; Liao WC
    Histochem Cell Biol; 2017 Oct; 148(4):407-416. PubMed ID: 28405806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conduction in a biological sodium selective channel.
    Stock L; Delemotte L; Carnevale V; Treptow W; Klein ML
    J Phys Chem B; 2013 Apr; 117(14):3782-9. PubMed ID: 23452067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Terahertz Electromagnetic Field on the Permeability of Potassium Channel Kv1.2.
    Ding W; Zhao X; Wang H; Wang Y; Liu Y; Gong L; Lin S; Liu C; Li Y
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rigid body Brownian dynamics as a tool for studying ion channel blockers.
    Gordon D; Chen R; Ho J; Coote ML; Chung SH
    J Phys Chem B; 2012 Feb; 116(6):1933-41. PubMed ID: 22257264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel.
    Ishida IG; Rangel-Yescas GE; Carrasco-Zanini J; Islas LD
    J Gen Physiol; 2015 Apr; 145(4):345-58. PubMed ID: 25779871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycosylation and cell surface expression of Kv1.2 potassium channel are regulated by determinants in the pore region.
    Fujita T; Utsunomiya I; Ren J; Matsushita Y; Kawai M; Sasaki S; Hoshi K; Miyatake T; Taguchi K
    Neurochem Res; 2006 May; 31(5):589-96. PubMed ID: 16770729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissecting the coupling between the voltage sensor and pore domains.
    Roux B
    Neuron; 2006 Nov; 52(4):568-9. PubMed ID: 17114039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation.
    Conti L; Renhorn J; Gabrielsson A; Turesson F; Liin SI; Lindahl E; Elinder F
    Sci Rep; 2016 Jun; 6():27562. PubMed ID: 27278891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Positive Allosteric Modulation of Kv Channels by Sevoflurane: Insights into the Structural Basis of Inhaled Anesthetic Action.
    Liang Q; Anderson WD; Jones ST; Souza CS; Hosoume JM; Treptow W; Covarrubias M
    PLoS One; 2015; 10(11):e0143363. PubMed ID: 26599217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of geometry changes in the channel pore by the gating movements on the channel's conductance.
    Wawrzkiewicz-JaƂowiecka A; Borys P; Grzywna ZJ
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):446-458. PubMed ID: 28064020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of external pH on activation of the Kv1.5 potassium channel.
    Trapani JG; Korn SJ
    Biophys J; 2003 Jan; 84(1):195-204. PubMed ID: 12524275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones.
    Guan D; Lee JC; Tkatch T; Surmeier DJ; Armstrong WE; Foehring RC
    J Physiol; 2006 Mar; 571(Pt 2):371-89. PubMed ID: 16373387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations.
    Chung SH; Allen TW; Kuyucak S
    Biophys J; 2002 Feb; 82(2):628-45. PubMed ID: 11806907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamic simulation of the Kv1.2 voltage-gated potassium channel in open and closed state conformations.
    Han M; Zhang JZ
    J Phys Chem B; 2008 Dec; 112(51):16966-74. PubMed ID: 19093881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generalized Langevin models of molecular dynamics simulations with applications to ion channels.
    Gordon D; Krishnamurthy V; Chung SH
    J Chem Phys; 2009 Oct; 131(13):134102. PubMed ID: 19814538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mesomartoxin, a new K(v)1.2-selective scorpion toxin interacting with the channel selectivity filter.
    Wang X; Umetsu Y; Gao B; Ohki S; Zhu S
    Biochem Pharmacol; 2015 Jan; 93(2):232-9. PubMed ID: 25514171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.