These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 26950502)

  • 1. An auto-adaptive background subtraction method for Raman spectra.
    Xie Y; Yang L; Sun X; Wu D; Chen Q; Zeng Y; Liu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 May; 161():58-63. PubMed ID: 26950502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to achieve auto-identification in Raman analysis by spectral feature extraction & Adaptive Hypergraph.
    Xie Y; You Q; Dai P; Wang S; Hong P; Liu G; Yu J; Sun X; Zeng Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117086. PubMed ID: 31200266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach.
    Wu Y; Guo P; Chen S; Chen H; Zhang Y
    Appl Opt; 2017 Apr; 56(10):2705-2713. PubMed ID: 28375232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for automated background subtraction from Raman spectra containing known contaminants.
    Beier BD; Berger AJ
    Analyst; 2009 Jun; 134(6):1198-202. PubMed ID: 19475148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Background Subtraction of Raman Spectra Based on Iterative Polynomial Smoothing.
    Wang T; Dai L
    Appl Spectrosc; 2017 Jun; 71(6):1169-1179. PubMed ID: 27694430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.
    Chen K; Zhang H; Wei H; Li Y
    Appl Opt; 2014 Aug; 53(24):5559-69. PubMed ID: 25321134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy.
    Zhao J; Lui H; McLean DI; Zeng H
    Appl Spectrosc; 2007 Nov; 61(11):1225-32. PubMed ID: 18028702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology-based automated baseline removal for Raman spectra of artistic pigments.
    Perez-Pueyo R; Soneira MJ; Ruiz-Moreno S
    Appl Spectrosc; 2010 Jun; 64(6):595-600. PubMed ID: 20537226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the Raman spectrum of graphitic material in rock samples with fluorescence backgrounds: accuracy of fitting and uncertainty estimation.
    Gasda PJ; Ogliore RC
    Appl Spectrosc; 2014; 68(12):1393-406. PubMed ID: 25356745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Automated Baseline Correction Method Based on Iterative Morphological Operations.
    Chen Y; Dai L
    Appl Spectrosc; 2018 May; 72(5):731-739. PubMed ID: 29254366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Step Preprocessing of Raman Spectra Using Convolutional Neural Networks.
    Wahl J; Sjödahl M; Ramser K
    Appl Spectrosc; 2020 Apr; 74(4):427-438. PubMed ID: 31961223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic baseline subtraction of vibrational spectra using minima identification and discrimination via adaptive, least-squares thresholding.
    Weakley AT; Griffiths PR; Aston DE
    Appl Spectrosc; 2012 May; 66(5):519-29. PubMed ID: 22524957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Open Source, Iterative Dual-Tree Wavelet Background Subtraction Method Extended from Automated Diffraction Pattern Analysis to Optical Spectroscopy.
    Chevalier RB; Dwyer JR
    Appl Spectrosc; 2019 Dec; 73(12):1370-1379. PubMed ID: 31397582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and integration of block operations for data invariant automation of digital preprocessing and analysis of biological and biomedical Raman spectra.
    Schulze HG; Turner RF
    Appl Spectrosc; 2015 Jun; 69(6):643-64. PubMed ID: 25954920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Proposal for Automated Background Removal of Bio-Raman Data.
    Sugawara T; Yang Q; Nakabayashi T; Morita SI
    Anal Sci; 2017; 33(12):1323-1325. PubMed ID: 29225218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shift-excitation Raman difference spectroscopy-difference deconvolution method for the luminescence background rejection from Raman spectra of solid samples.
    Osticioli I; Zoppi A; Castellucci EM
    Appl Spectrosc; 2007 Aug; 61(8):839-44. PubMed ID: 17716402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Adaptive EEMD residue related baseline correction algorithm].
    Zhan XY; Fang YM; Guan Y; Wang ZG; Tong L; Feng T
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1624-8. PubMed ID: 25358176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [An auto-extraction method of spectral line for normal galaxy spectra].
    Liu R; Liu SY; Zhao RZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Mar; 26(3):583-6. PubMed ID: 16830786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of spectrum processing method for Raman microscopy on single living cell].
    Kang LL; Huang YX; Wu ZJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Feb; 31(2):408-11. PubMed ID: 21510392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Baseline correction of Raman spectrum based on piecewise linear fitting].
    Qin ZJ; Tao ZH; Liu JX; Wang GW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Feb; 33(2):383-6. PubMed ID: 23697116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.