These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 26950528)
1. Inhalation of two putative Gulf War toxins by mice. Repine JE; Wilson P; Elkins N; Klawitter J; Christians U; Peters B; Smith DM J Environ Sci Health B; 2016; 51(6):366-73. PubMed ID: 26950528 [TBL] [Abstract][Full Text] [Related]
2. Experimental respiratory exposure to putative Gulf War toxins promotes persistent alveolar macrophage recruitment and pulmonary inflammation. Powers AA; Jones KE; Eisenberg SH; Rigatti LH; Ryan JP; Luketich JD; Lotze MT; LaRue AC; Dhupar R; Soloff AC Life Sci; 2021 Oct; 282():119839. PubMed ID: 34293400 [TBL] [Abstract][Full Text] [Related]
3. Effects of fine carbonaceous particles containing high and low unpaired electron spin densities on lungs of female mice. Repine JE; Reiss OK; Elkins N; Chughtai AR; Smith DM Transl Res; 2008 Oct; 152(4):185-93. PubMed ID: 18940721 [TBL] [Abstract][Full Text] [Related]
4. NTP Toxicology and Carcinogenesis Studies of Talc (CAS No. 14807-96-6)(Non-Asbestiform) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 1993 Sep; 421():1-287. PubMed ID: 12616290 [TBL] [Abstract][Full Text] [Related]
5. Tissue injury following inhalation of fine particulate matter and hydrogen peroxide is associated with altered production of inflammatory mediators and antioxidants by alveolar macrophages. Morio LA; Hooper KA; Brittingham J; Li TH; Gordon RE; Turpin BJ; Laskin DL Toxicol Appl Pharmacol; 2001 Dec; 177(3):188-99. PubMed ID: 11749118 [TBL] [Abstract][Full Text] [Related]
6. Incomplete lung recovery following sub-acute inhalation of combustion-derived ultrafine particles in mice. Noël A; Xiao R; Perveen Z; Zaman HM; Rouse RL; Paulsen DB; Penn AL Part Fibre Toxicol; 2016 Feb; 13():10. PubMed ID: 26911867 [TBL] [Abstract][Full Text] [Related]
7. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Sayes CM; Reed KL; Warheit DB Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066 [TBL] [Abstract][Full Text] [Related]
8. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Bermudez E; Mangum JB; Wong BA; Asgharian B; Hext PM; Warheit DB; Everitt JI Toxicol Sci; 2004 Feb; 77(2):347-57. PubMed ID: 14600271 [TBL] [Abstract][Full Text] [Related]
9. Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation. Warheit DB; Hansen JF; Yuen IS; Kelly DP; Snajdr SI; Hartsky MA Toxicol Appl Pharmacol; 1997 Jul; 145(1):10-22. PubMed ID: 9221819 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the direct systemic and cardiopulmonary effects of diesel particles in spontaneously hypertensive rats. Nemmar A; Dhanasekaran S; Yasin J; Ba-Omar H; Fahim MA; Kazzam EE; Ali BH Toxicology; 2009 Jul; 262(1):50-6. PubMed ID: 19463885 [TBL] [Abstract][Full Text] [Related]
12. Lung inflammation and genotoxicity in mice lungs after pulmonary exposure to candle light combustion particles. Skovmand A; Damiao Gouveia AC; Koponen IK; Møller P; Loft S; Roursgaard M Toxicol Lett; 2017 Jul; 276():31-38. PubMed ID: 28465192 [TBL] [Abstract][Full Text] [Related]
13. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles. Roedel EQ; Cafasso DE; Lee KW; Pierce LM Toxicol Appl Pharmacol; 2012 Feb; 259(1):74-86. PubMed ID: 22198552 [TBL] [Abstract][Full Text] [Related]
14. N-acetylcysteine prevents lung inflammation after short-term inhalation exposure to concentrated ambient particles. Rhoden CR; Lawrence J; Godleski JJ; González-Flecha B Toxicol Sci; 2004 Jun; 79(2):296-303. PubMed ID: 15056806 [TBL] [Abstract][Full Text] [Related]
15. Soot nanoparticles promote biotransformation, oxidative stress, and inflammation in murine lungs. Rouse RL; Murphy G; Boudreaux MJ; Paulsen DB; Penn AL Am J Respir Cell Mol Biol; 2008 Aug; 39(2):198-207. PubMed ID: 18367723 [TBL] [Abstract][Full Text] [Related]
16. Depression of stimulated arachidonate metabolism and superoxide production in rat alveolar macrophages following in vivo exposure to 0.5 ppm NO2. Robison TW; Murphy JK; Beyer LL; Richters A; Forman HJ J Toxicol Environ Health; 1993 Mar; 38(3):273-92. PubMed ID: 8383773 [TBL] [Abstract][Full Text] [Related]
17. Concomitant exposure to carbon black particulates enhances ozone-induced lung inflammation and suppression of alveolar macrophage phagocytosis. Jakab GJ; Hemenway DR J Toxicol Environ Health; 1994 Feb; 41(2):221-31. PubMed ID: 8301700 [TBL] [Abstract][Full Text] [Related]
18. Mass or total surface area with aerosol size distribution as exposure metrics for inflammatory, cytotoxic and oxidative lung responses in rats exposed to titanium dioxide nanoparticles. Noël A; Truchon G; Cloutier Y; Charbonneau M; Maghni K; Tardif R Toxicol Ind Health; 2017 Apr; 33(4):351-364. PubMed ID: 27256293 [TBL] [Abstract][Full Text] [Related]
19. No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice. Chen S; Yin R; Mutze K; Yu Y; Takenaka S; Königshoff M; Stoeger T Part Fibre Toxicol; 2016 Jun; 13(1):33. PubMed ID: 27328634 [TBL] [Abstract][Full Text] [Related]
20. The induction of lipid peroxidation during the acute oxidative stress response induced by intratracheal instillation of fine crystalline silica particles in rats. Fukui H; Endoh S; Shichiri M; Ishida N; Hagihara Y; Yoshida Y; Iwahashi H; Horie M Toxicol Ind Health; 2016 Aug; 32(8):1430-1437. PubMed ID: 25552537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]