These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 2695060)

  • 1. Variation in four acid hydrolase activities in filarial-susceptible and -refractory genotypes of Aedes aegypti.
    Nasr-Schirf D; Rodriguez PH; Schirf VR; Gonzalez CI; Tamayo M
    Biochem Genet; 1989 Oct; 27(9-10):533-9. PubMed ID: 2695060
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparative development of Brugia pahangi and variation in acid hydrolase enzyme titers in.
    Rodriguez PH; Larson GA; Lazaro CA; Castillon R; Nasr-Schirf D
    J Am Mosq Control Assoc; 2000 Dec; 16(4):288-94. PubMed ID: 11198915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative development of Brugia malayi in susceptible and refractory genotypes of Aedes aegypti.
    Rodriguez PH; Torres C; Marotta JA
    J Parasitol; 1984 Dec; 70(6):1001-2. PubMed ID: 6527177
    [No Abstract]   [Full Text] [Related]  

  • 4. Aedes aegypti: a quantitative trait locus (QTL) influencing filarial worm intensity is linked to QTL for susceptibility to other mosquito-borne pathogens.
    Beerntsen BT; Severson DW; Klinkhammer JA; Kassner VA; Christensen BM
    Exp Parasitol; 1995 Nov; 81(3):355-62. PubMed ID: 7498432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further evidence that the genes controlling susceptibility of Aedes aegypti to filarial parasites function independently.
    Wattam AR; Christensen BM
    J Parasitol; 1992 Dec; 78(6):1092-5. PubMed ID: 1491306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of p-aminobenzoic acid and folic acid on the development of infective larvae of Brugia malayi in Aedes aegypti.
    Rao UR; Chandrashekar R; Parab PB; Subrahmanyam D
    Acta Trop; 1984 Mar; 41(1):61-7. PubMed ID: 6143484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysosomal acid hydrolase activities in the aging heart.
    Traurig HH; Papka RE
    Exp Gerontol; 1980; 15(4):291-9. PubMed ID: 7409026
    [No Abstract]   [Full Text] [Related]  

  • 8. The orthologue to the Cpm1/Cqm1 receptor in Aedes aegypti is expressed as a midgut GPI-anchored α-glucosidase, which does not bind to the insecticidal binary toxin.
    Ferreira LM; Romão TP; de-Melo-Neto OP; Silva-Filha MH
    Insect Biochem Mol Biol; 2010 Aug; 40(8):604-10. PubMed ID: 20685335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethyl-methanesulfonate-induced changes in filarial susceptibility in Aedes aegypti (Diptera: Culicidae).
    Rodriguez PH
    J Med Entomol; 1985 Jul; 22(4):366-9. PubMed ID: 4045933
    [No Abstract]   [Full Text] [Related]  

  • 10. Reinterpretation of the genetics of susceptibility of Aedes aegypti to Plasmodium gallinaceum.
    Thathy V; Severson DW; Christensen BM
    J Parasitol; 1994 Oct; 80(5):705-12. PubMed ID: 7931905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Changes in the susceptibility of the recipient Aedes aegypti to Brugia pahangi after passive transfer of haemolymph].
    Huang JL
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 1990; 8(4):253-5. PubMed ID: 2099252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in filarial susceptibility among East African populations of Aedes aegypti.
    Paige CJ; Craig GB
    J Med Entomol; 1975 Dec; 12(5):485-93. PubMed ID: 1223294
    [No Abstract]   [Full Text] [Related]  

  • 13. Genetic aspects of the susceptibility of Aedes aegypti to Dirofilaria and Brugia.
    Townson H; Sulaiman I; Matthews HA
    Trans R Soc Trop Med Hyg; 1981; 75(1):175-6. PubMed ID: 7268859
    [No Abstract]   [Full Text] [Related]  

  • 14. Acid hydrolases in developing oro-facial structures of the rat.
    Del Balso AM; Kauffman FC
    Arch Oral Biol; 1975 Apr; 20(4):247-9. PubMed ID: 1056766
    [No Abstract]   [Full Text] [Related]  

  • 15. Alteration in Aedes togoi susceptibility to Brugia pahangi microfilariae induced by Aedes albopictus thoracic homogenate.
    Abeywickreme W; Sucharit S; Choochote W; Chaicumpa W; Tumrasavin W
    Southeast Asian J Trop Med Public Health; 1989 Mar; 20(1):133-7. PubMed ID: 2772699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of the gene sb in Culex pipiens on the development of sub-periodic Brugia malayi and Wuchereria bancrofti.
    Obiamiwe BA
    Ann Trop Med Parasitol; 1977 Dec; 71(4):487-90. PubMed ID: 596959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory transmission of lymphatic filariasis by vector mosquitoes.
    Ewert A; Wu CC; Fan PC
    Southeast Asian J Trop Med Public Health; 1987 Mar; 18(1):73-8. PubMed ID: 3660071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretory hydrolases of Entamoeba histolytica.
    Müller FW; Franz A; Werries E
    J Protozool; 1988 May; 35(2):291-5. PubMed ID: 2456386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylenetetrahydrofolate dehydrogenase and reductase activity in normal and Brugia pahangi-infected Aedes aegypti.
    Jaffe JJ; Chrin LR
    J Parasitol; 1978 Aug; 64(4):661-8. PubMed ID: 682069
    [No Abstract]   [Full Text] [Related]  

  • 20. Subcellular distribution of hydrolases in Naegleria fowleri.
    Lowrey DM; McLaughlin J
    J Protozool; 1985 Nov; 32(4):616-21. PubMed ID: 2999380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.