BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26950608)

  • 1. Homologous PNA Hybridization to Noncanonical DNA G-Quadruplexes.
    Kormuth KA; Woolford JL; Armitage BA
    Biochemistry; 2016 Mar; 55(12):1749-57. PubMed ID: 26950608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.
    Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Biochemistry; 2007 Sep; 46(37):10433-43. PubMed ID: 17718513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybridization of G-quadruplex-forming peptide nucleic acids to guanine-rich DNA templates inhibits DNA polymerase η extension.
    Murphy CT; Gupta A; Armitage BA; Opresko PL
    Biochemistry; 2014 Aug; 53(32):5315-22. PubMed ID: 25068499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quadruplex formation by a guanine-rich PNA oligomer.
    Datta B; Bier ME; Roy S; Armitage BA
    J Am Chem Soc; 2005 Mar; 127(12):4199-207. PubMed ID: 15783201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strand invasion of DNA quadruplexes by PNA: comparison of homologous and complementary hybridization.
    Gupta A; Lee LL; Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Chembiochem; 2013 Aug; 14(12):1476-84. PubMed ID: 23868291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and characterization of PNA-containing heteroquadruplexes.
    Armitage BA
    Methods Mol Biol; 2014; 1050():73-82. PubMed ID: 24297351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic discrimination in recognition of DNA quadruplex targets by guanine-rich heteroquadruplex-forming PNA probes.
    Roy S; Zanotti KJ; Murphy CT; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Chem Commun (Camb); 2011 Aug; 47(30):8524-6. PubMed ID: 21717030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of a PNA2-DNA2 hybrid quadruplex.
    Datta B; Schmitt C; Armitage BA
    J Am Chem Soc; 2003 Apr; 125(14):4111-8. PubMed ID: 12670232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivalent LKγ-PNA oligomers bind to a human telomere DNA G-rich sequence to form quadruplexes.
    Gupta P; Rastede EE; Appella DH
    Bioorg Med Chem Lett; 2015 Nov; 25(21):4757-4760. PubMed ID: 26259805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-quadruplex formation between G-rich PNA and homologous sequences in oligonucleotides and supercoiled plasmid DNA.
    Gaynutdinov TI; Englund EA; Appella DH; Onyshchenko MI; Neumann RD; Panyutin IG
    Nucleic Acid Ther; 2015 Apr; 25(2):78-84. PubMed ID: 25650982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting nucleic acids with a G-triplex-to-G-quadruplex transformation and stabilization using a peptide-PNA G-tract conjugate.
    Wen CJ; Gong JY; Zheng KW; He YD; Zhang JY; Hao YH; Tan Z
    Chem Commun (Camb); 2020 Jun; 56(48):6567-6570. PubMed ID: 32396929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop and backbone modifications of peptide nucleic acid improve g-quadruplex binding selectivity.
    Lusvarghi S; Murphy CT; Roy S; Tanious FA; Sacui I; Wilson WD; Ly DH; Armitage BA
    J Am Chem Soc; 2009 Dec; 131(51):18415-24. PubMed ID: 19947597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybridization of complementary and homologous peptide nucleic acid oligomers to a guanine quadruplex-forming RNA.
    Marin VL; Armitage BA
    Biochemistry; 2006 Feb; 45(6):1745-54. PubMed ID: 16460021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G-rich sequence-specific recognition and scission of human genome by PNA/DNA hybrid G-quadruplex formation.
    Ishizuka T; Yang J; Komiyama M; Xu Y
    Angew Chem Int Ed Engl; 2012 Jul; 51(29):7198-202. PubMed ID: 22700182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybridization of short complementary PNAs to G-quadruplex forming oligonucleotides: An electrospray mass spectrometry study.
    Amato J; Oliviero G; De Pauw E; Gabelica V
    Biopolymers; 2009 Apr; 91(4):244-55. PubMed ID: 19065573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridization of PNA to structured DNA targets: quadruplex invasion and the overhang effect.
    Datta B; Armitage BA
    J Am Chem Soc; 2001 Oct; 123(39):9612-9. PubMed ID: 11572682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced stability of G-quadruplexes from conformationally constrained aep-PNA backbone.
    Sharma NK; Ganesh KN
    Org Biomol Chem; 2011 Feb; 9(3):725-9. PubMed ID: 21076749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quadruplex formation is necessary for stable PNA invasion into duplex DNA of BCL2 promoter region.
    Onyshchenko MI; Gaynutdinov TI; Englund EA; Appella DH; Neumann RD; Panyutin IG
    Nucleic Acids Res; 2011 Sep; 39(16):7114-23. PubMed ID: 21593130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics and kinetics of PNA-DNA quadruplex-forming chimeras.
    Petraccone L; Pagano B; Esposito V; Randazzo A; Piccialli G; Barone G; Mattia CA; Giancola C
    J Am Chem Soc; 2005 Nov; 127(46):16215-23. PubMed ID: 16287312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA guanine quadruplex invasion by complementary and homologous PNA probes.
    Marin VL; Armitage BA
    J Am Chem Soc; 2005 Jun; 127(22):8032-3. PubMed ID: 15926825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.