BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26950637)

  • 1. Application of a multi-method approach in characterization of natural aquatic colloids from different sources along Huangpu River in Shanghai, China.
    Yan C; Nie M; Lead JR; Yang Y; Zhou J; Merrifield R; Baalousha M
    Sci Total Environ; 2016 Jun; 554-555():228-36. PubMed ID: 26950637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of aquatic dissolved organic matter by asymmetrical flow field-flow fractionation coupled to UV-Visible diode array and excitation emission matrix fluorescence.
    Guéguen C; Cuss CW
    J Chromatogr A; 2011 Jul; 1218(27):4188-98. PubMed ID: 21227433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size fractionation and characterization of natural aquatic colloids and nanoparticles.
    Baalousha M; Lead JR
    Sci Total Environ; 2007 Nov; 386(1-3):93-102. PubMed ID: 17644161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking fluorescence spectroscopy to diffuse soil source for dissolved humic substances in the Daning River, China.
    Chen H; Zheng BH; Zhang L
    Environ Sci Process Impacts; 2013 Feb; 15(2):485-93. PubMed ID: 25208714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review.
    Baalousha M; Stolpe B; Lead JR
    J Chromatogr A; 2011 Jul; 1218(27):4078-103. PubMed ID: 21621214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of sewage plant hydrocolloids using asymmetrical flow field-flow fractionation and ICP-mass spectrometry.
    Prestel H; Schott L; Niessner R; Panne U
    Water Res; 2005 Sep; 39(15):3541-52. PubMed ID: 16095663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport.
    Hammes J; Gallego-Urrea JA; Hassellöv M
    Water Res; 2013 Sep; 47(14):5350-61. PubMed ID: 23863373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of suboxic groundwater colloids using a multi-method approach.
    Lapworth DJ; Stolpe B; Williams PJ; Gooddy DC; Lead JR
    Environ Sci Technol; 2013 Mar; 47(6):2554-61. PubMed ID: 23402641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of natural aquatic colloids (<5 nm) by flow-field flow fractionation and atomic force microscopy.
    Baalousha M; Lead JR
    Environ Sci Technol; 2007 Feb; 41(4):1111-7. PubMed ID: 17593707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part I: structural characterization of humic substances.
    Rodríguez FJ; Schlenger P; García-Valverde M
    Sci Total Environ; 2014 Apr; 476-477():718-30. PubMed ID: 24364992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using FLOWFFF and HPSEC to determine trace metal-colloid associations in wetland runoff.
    Neubauer E; v d Kammer F; Hofmann T
    Water Res; 2013 May; 47(8):2757-69. PubMed ID: 23528782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Combining ultrafiltration, fluorescence spectroscopy and HPSEC to characterize dissolved organic matter in surface waters].
    Wang J; Wu FC; Wang LY; Liao HQ; Li W
    Huan Jing Ke Xue; 2008 Nov; 29(11):3027-34. PubMed ID: 19186797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids.
    Moens C; Waegeneers N; Fritzsche A; Nobels P; Smolders E
    J Chromatogr A; 2019 Aug; 1599():203-214. PubMed ID: 31047657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multi-dimensional fluorescence spectroscopy.
    Tedetti M; Cuet P; Guigue C; Goutx M
    Sci Total Environ; 2011 May; 409(11):2198-210. PubMed ID: 21388658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of organic pollution of an industrial river by synchronous fluorescence and UV-vis spectroscopy: the Fensch River (NE France).
    Assaad A; Pontvianne S; Pons MN
    Environ Monit Assess; 2017 May; 189(5):229. PubMed ID: 28435997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of freshwater natural aquatic colloids by atomic force microscopy (AFM).
    Lead JR; Muirhead D; Gibson CT
    Environ Sci Technol; 2005 Sep; 39(18):6930-6. PubMed ID: 16201613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between the characterization of natural colloids and metal elements in surface waters.
    Yan C; Sheng Y; Ju M; Ding C; Li Q; Luo Z; Ding M; Nie M
    Environ Sci Pollut Res Int; 2020 Sep; 27(25):31872-31883. PubMed ID: 32504431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Gorleben groundwater colloids by atomic force microscopy.
    Plaschke M; Römer J; Kim JI
    Environ Sci Technol; 2002 Nov; 36(21):4483-8. PubMed ID: 12433155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering.
    Baalousha M; Kammer FV; Motelica-Heino M; Hilal HS; Le Coustumer P
    J Chromatogr A; 2006 Feb; 1104(1-2):272-81. PubMed ID: 16360663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Change of humic-like fluorescence characteristics of dissolved organic matter from Dagu River to Jiaozhou Bay].
    Ji NY; Zhao WH; Wang JT; Miao H
    Huan Jing Ke Xue; 2006 Jun; 27(6):1073-7. PubMed ID: 16921937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.