These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 2695064)
1. 32P-labelling anomalies in human erythrocytes. Is there more than one pool of cellular Pi? Kemp GJ; Bevington A; Khodja D; Challa A; Russell RG Biochem J; 1989 Dec; 264(3):729-36. PubMed ID: 2695064 [TBL] [Abstract][Full Text] [Related]
2. Maturation of rabbit reticulocytes: strong decline of the turnover of polyphosphoinositides. Maretzki D; Kostic M; Reimann B; Schwarzer E; Rapoport SM Biomed Biochim Acta; 1986; 45(10):1227-36. PubMed ID: 3032164 [TBL] [Abstract][Full Text] [Related]
3. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia. Tenenhouse HS; Scriver CR J Clin Invest; 1975 Mar; 55(3):644-54. PubMed ID: 1117070 [TBL] [Abstract][Full Text] [Related]
4. Multiple metabolic pools of phosphoinositides and phosphatidate in human erythrocytes incubated in a medium that permits rapid transmembrane exchange of phosphate. King CE; Stephens LR; Hawkins PT; Guy GR; Michell RH Biochem J; 1987 May; 244(1):209-17. PubMed ID: 2821998 [TBL] [Abstract][Full Text] [Related]
5. Product-precursor relationships amongst inositol polyphosphates. Incorporation of [32P]Pi into myo-inositol 1,3,4,6-tetrakisphosphate, myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 3,4,5,6-tetrakisphosphate and myo-inositol 1,3,4,5,6-pentakisphosphate in intact avian erythrocytes. Stephens LR; Downes CP Biochem J; 1990 Jan; 265(2):435-52. PubMed ID: 2405842 [TBL] [Abstract][Full Text] [Related]
6. Determination of the steady-state turnover rates of the metabolically active pools of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in human erythrocytes. King CE; Hawkins PT; Stephens LR; Michell RH Biochem J; 1989 May; 259(3):893-6. PubMed ID: 2543372 [TBL] [Abstract][Full Text] [Related]
7. [In vitro estimation using radioactive phosphorus of the phosphorus requirements of rumen microorganisms]. Durand M; Beaumatin P; Dumay C Reprod Nutr Dev (1980); 1983; 23(4):727-39. PubMed ID: 6351207 [TBL] [Abstract][Full Text] [Related]
8. Mode of orthophosphate uptake and ATP labeling by mammalian cells. Niehaus WG; Hammerstedt RH Biochim Biophys Acta; 1976 Sep; 443(3):515-24. PubMed ID: 9142 [TBL] [Abstract][Full Text] [Related]
9. Regulation of phosphate metabolism in human red cells following prolonged incubation to steady state in vitro. Kemp GJ; Bevington A; Khodja D; Russell RG Biochim Biophys Acta; 1988 Apr; 969(2):139-47. PubMed ID: 3355860 [TBL] [Abstract][Full Text] [Related]
10. Pathway of synthesis of 3,4- and 4,5-phosphorylated phosphatidylinositols in the duckweed Spirodela polyrhiza L. Brearley CA; Hanke DE Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):145-50. PubMed ID: 8382475 [TBL] [Abstract][Full Text] [Related]
11. Functional heterogeneity of polyphosphoinositides in human erythrocytes. Gascard P; Journet E; Sulpice JC; Giraud F Biochem J; 1989 Dec; 264(2):547-53. PubMed ID: 2557844 [TBL] [Abstract][Full Text] [Related]
12. Theoretical interpretation of isotope labelling experiments in cells in which the label is chemically incorporated: the example of orthophosphate. Kemp GJ; Bevington A; Russell RG J Theor Biol; 1988 Oct; 134(3):351-64. PubMed ID: 3254433 [TBL] [Abstract][Full Text] [Related]
13. A study of intracellular orthophosphate concentration in human muscle and erythrocytes by 31P nuclear magnetic resonance spectroscopy and selective chemical assay. Bevington A; Mundy KI; Yates AJ; Kanis JA; Russell RG; Taylor DJ; Rajagopalan B; Radda GK Clin Sci (Lond); 1986 Dec; 71(6):729-35. PubMed ID: 3024899 [TBL] [Abstract][Full Text] [Related]
14. Turnover of phosphomonoester groups and compartmentation of polyphosphoinositides in human erythrocytes. Müller E; Hegewald H; Jaroszewicz K; Cumme GA; Hoppe H; Frunder H Biochem J; 1986 May; 235(3):775-83. PubMed ID: 3019307 [TBL] [Abstract][Full Text] [Related]
15. Metabolic acidosis is a potent stimulus for cellular inorganic phosphate generation in uraemia. Bevington A; Brough D; Baker FE; Hattersley J; Walls J Clin Sci (Lond); 1995 Apr; 88(4):405-12. PubMed ID: 7789041 [TBL] [Abstract][Full Text] [Related]
16. Phosphate depletion in opossum kidney cells: apical but not basolateral or transepithelial adaptions of Pi transport. Barac-Nieto M; Alfred M; Spitzer A Exp Nephrol; 2001; 9(4):258-64. PubMed ID: 11423725 [TBL] [Abstract][Full Text] [Related]
17. Evidence for a model of integrated inositol phospholipid pools implies an essential role for lipid transport in the maintenance of receptor-mediated phospholipase C activity in 1321N1 cells. Batty IH; Currie RA; Downes CP Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1069-77. PubMed ID: 9494070 [TBL] [Abstract][Full Text] [Related]
18. Turnover of cyclic 2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum. Phosphate flux in P1- and H2-limited chemostat cultures. Krueger RD; Campbell JW; Fahrney DE J Biol Chem; 1986 Sep; 261(26):11945-8. PubMed ID: 3745174 [TBL] [Abstract][Full Text] [Related]
19. Phosphate concentration and transport in Ehrlich ascites tumor cells: effect of sodium. Bowen JW; Levinson C J Cell Physiol; 1982 Feb; 110(2):149-54. PubMed ID: 7068772 [TBL] [Abstract][Full Text] [Related]
20. The labelling of polyphosphoinositides with [32P]Pi and the accumulation of inositol phosphates in vasopressin-stimulated hepatocytes. Palmer S; Hawkins PT; Michell RH; Kirk CJ Biochem J; 1986 Sep; 238(2):491-9. PubMed ID: 3026353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]