BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2695064)

  • 1. 32P-labelling anomalies in human erythrocytes. Is there more than one pool of cellular Pi?
    Kemp GJ; Bevington A; Khodja D; Challa A; Russell RG
    Biochem J; 1989 Dec; 264(3):729-36. PubMed ID: 2695064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maturation of rabbit reticulocytes: strong decline of the turnover of polyphosphoinositides.
    Maretzki D; Kostic M; Reimann B; Schwarzer E; Rapoport SM
    Biomed Biochim Acta; 1986; 45(10):1227-36. PubMed ID: 3032164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia.
    Tenenhouse HS; Scriver CR
    J Clin Invest; 1975 Mar; 55(3):644-54. PubMed ID: 1117070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple metabolic pools of phosphoinositides and phosphatidate in human erythrocytes incubated in a medium that permits rapid transmembrane exchange of phosphate.
    King CE; Stephens LR; Hawkins PT; Guy GR; Michell RH
    Biochem J; 1987 May; 244(1):209-17. PubMed ID: 2821998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Product-precursor relationships amongst inositol polyphosphates. Incorporation of [32P]Pi into myo-inositol 1,3,4,6-tetrakisphosphate, myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 3,4,5,6-tetrakisphosphate and myo-inositol 1,3,4,5,6-pentakisphosphate in intact avian erythrocytes.
    Stephens LR; Downes CP
    Biochem J; 1990 Jan; 265(2):435-52. PubMed ID: 2405842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the steady-state turnover rates of the metabolically active pools of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in human erythrocytes.
    King CE; Hawkins PT; Stephens LR; Michell RH
    Biochem J; 1989 May; 259(3):893-6. PubMed ID: 2543372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [In vitro estimation using radioactive phosphorus of the phosphorus requirements of rumen microorganisms].
    Durand M; Beaumatin P; Dumay C
    Reprod Nutr Dev (1980); 1983; 23(4):727-39. PubMed ID: 6351207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode of orthophosphate uptake and ATP labeling by mammalian cells.
    Niehaus WG; Hammerstedt RH
    Biochim Biophys Acta; 1976 Sep; 443(3):515-24. PubMed ID: 9142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of phosphate metabolism in human red cells following prolonged incubation to steady state in vitro.
    Kemp GJ; Bevington A; Khodja D; Russell RG
    Biochim Biophys Acta; 1988 Apr; 969(2):139-47. PubMed ID: 3355860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway of synthesis of 3,4- and 4,5-phosphorylated phosphatidylinositols in the duckweed Spirodela polyrhiza L.
    Brearley CA; Hanke DE
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):145-50. PubMed ID: 8382475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional heterogeneity of polyphosphoinositides in human erythrocytes.
    Gascard P; Journet E; Sulpice JC; Giraud F
    Biochem J; 1989 Dec; 264(2):547-53. PubMed ID: 2557844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical interpretation of isotope labelling experiments in cells in which the label is chemically incorporated: the example of orthophosphate.
    Kemp GJ; Bevington A; Russell RG
    J Theor Biol; 1988 Oct; 134(3):351-64. PubMed ID: 3254433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of intracellular orthophosphate concentration in human muscle and erythrocytes by 31P nuclear magnetic resonance spectroscopy and selective chemical assay.
    Bevington A; Mundy KI; Yates AJ; Kanis JA; Russell RG; Taylor DJ; Rajagopalan B; Radda GK
    Clin Sci (Lond); 1986 Dec; 71(6):729-35. PubMed ID: 3024899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turnover of phosphomonoester groups and compartmentation of polyphosphoinositides in human erythrocytes.
    Müller E; Hegewald H; Jaroszewicz K; Cumme GA; Hoppe H; Frunder H
    Biochem J; 1986 May; 235(3):775-83. PubMed ID: 3019307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic acidosis is a potent stimulus for cellular inorganic phosphate generation in uraemia.
    Bevington A; Brough D; Baker FE; Hattersley J; Walls J
    Clin Sci (Lond); 1995 Apr; 88(4):405-12. PubMed ID: 7789041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate depletion in opossum kidney cells: apical but not basolateral or transepithelial adaptions of Pi transport.
    Barac-Nieto M; Alfred M; Spitzer A
    Exp Nephrol; 2001; 9(4):258-64. PubMed ID: 11423725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a model of integrated inositol phospholipid pools implies an essential role for lipid transport in the maintenance of receptor-mediated phospholipase C activity in 1321N1 cells.
    Batty IH; Currie RA; Downes CP
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1069-77. PubMed ID: 9494070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turnover of cyclic 2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum. Phosphate flux in P1- and H2-limited chemostat cultures.
    Krueger RD; Campbell JW; Fahrney DE
    J Biol Chem; 1986 Sep; 261(26):11945-8. PubMed ID: 3745174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate concentration and transport in Ehrlich ascites tumor cells: effect of sodium.
    Bowen JW; Levinson C
    J Cell Physiol; 1982 Feb; 110(2):149-54. PubMed ID: 7068772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The labelling of polyphosphoinositides with [32P]Pi and the accumulation of inositol phosphates in vasopressin-stimulated hepatocytes.
    Palmer S; Hawkins PT; Michell RH; Kirk CJ
    Biochem J; 1986 Sep; 238(2):491-9. PubMed ID: 3026353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.